Меню
Главная
Случайная статья
Настройки
|
Модуль Юнга (синонимы: модуль продольной упругости, модуль нормальной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой Е.
Назван в честь английского физика XIX века Томаса Юнга.
В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.
В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.
Модуль Юнга рассчитывается следующим образом:
где:
- — нормальная составляющая силы,
- — площадь поверхности, по которой распределено действие силы,
- — длина деформируемого стержня,
- — модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина ).
Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:
где — плотность вещества.
Содержание
Связь с другими модулями упругости
В случае изотропного тела модуль Юнга связан с модулем сдвига и модулем объёмной упругости соотношениями
и
где — коэффициент Пуассона.
Температурная зависимость модуля Юнга
Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости определяется как вторая производная от внутренней энергии по соответствующей деформации . Поэтому при температурах ( — температура Дебая)
температурная зависимость модуля упругости определяется простым соотношением
где
— адиабатический модуль упругости идеального кристалла при ; — дефект модуля, обусловленный тепловыми фононами; — дефект модуля, обусловленный тепловым движением электронов проводимости[2].
Значения модуля Юнга для некоторых материалов
Значения модуля Юнга для некоторых материалов приведены в таблице
См. также
Примечания
- Главный редактор А. М. Прохоров. Модули упругости // Физический энциклопедический словарь. — М.: Советская энциклопедия (рус.). — 1983. — Статьи в Физическом энциклопедическом словаре и Физической энциклопедии.
- Паль-Валь Л. Н., Семеренко Ю. А., Паль-Валь П. П., Скибина Л. В., Грикуров Г. Н. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5—300 К // Конденсированные среды и межфазные границы. — 2008. — Т. 10, вып. 3. — С. 226—235. Архивировано 7 ноября 2017 года.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Анурьев В. И. Справочник конструктора-машиностроителя в 3т. Т. 1/В. И. Анурьев; 8-е изд., перераб и доп. Под ред. И. Н. Жестковой. — М.: Машиностроение, 2001. — С. 34. ISBN 5-217-02963-3
- Галашев А. Е., Рахманова О. Р. Устойчивость графена и материалов на его основе при механических и термических воздействиях (рус.) // Успехи физических наук. — М.: РАН, ФИАН, 2014. — Т. 184, вып. 10. — С. 1051. Архивировано 2 апреля 2016 года.
- В.Д. Нацик, П.П. Паль-Валь, Л.Н. Паль-Валь, Ю.А. Семеренко. Низкотемпературный a-пик внутреннего трения в ниобии и его связь с релаксацией кинков на дислокациях // ФНТ. — 2001. — Т. 27, вып. 5. — С. 547—557. Архивировано 7 ноября 2017 года.
- П.П. Паль-Валь, В.Д. Нацик, Л.Н. Паль-Валь, Ю.А. Семеренко. Нелинейные акустические эффекты в монокристаллах ниобия, обусловленные дислокациями // ФНТ. — 2004. — Т. 30, вып. 1. — С. 115—125. Архивировано 7 ноября 2017 года.
Литература- Волькенштейн В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. — СПб.: Лань, 1999. — 328 с.
Ссылки
|
|