Меню

Главная
Случайная статья
Настройки
Граница Варшамова — Гилберта
Материал из https://ru.wikipedia.org

Граница Варшамова — Гилберта — неравенство, определяющее предельные значения для параметров кодов (не обязательно линейных), полученное независимо Эдгаром Гилбертом[англ.] и Ромом Варшамовым. Иногда употребляется название неравенство Гилберта — Шеннона — Варшамова, а в иноязычной научной литературе — неравенство Гилберта — Варшамова.

Содержание

Формулировка

Пусть


обозначает максимально возможную мощность -чного кода длины и расстояния Хэмминга (-чным кодом является код с символами из поля , состоящего из элементов).

Тогда


Когда является степенью простого числа, можно упростить неравенство до , где  — наибольшее целое число, для которого .

Доказательство

Пусть  — код максимальной мощности при длине и расстоянии Хэмминга  :


Тогда для любого существует по крайней мере одно кодовое слово , так что расстояние Хэмминга между и удовлетворяет


потому как в противном случае мы могли бы расширить код с помощью слова , оставив расстояние Хэмминга неизменным, что противоречит предположению относительно максимальной мощности .

Поэтому поле можно упаковать объединением множеств всех сфер радиуса с центром в :


Объём каждого шара


потому что мы можем позволить (или выбрать) не более чем -му из компонентов кодового слова принять одно из других возможных значений. Поэтому верно следующее неравенство


То есть


(подставив ).

Литература
  • Gilbert E. N. A comparison of signalling alphabets // Bell System Technical Journal, 31:504-522 [1], 1952.
  • Варшамов Р. Р. Оценка числа сигналов в кодах с коррекцией ошибок // Доклады Академии наук СССР, 117(5):739-741 [1], 1957.


См. также
Downgrade Counter