Меню

Главная
Случайная статья
Настройки
Гиперболоид
Материал из https://ru.wikipedia.org

Гиперболоид (от др.-греч.  — гипербола, и  — вид, внешность) — незамкнутая центральная поверхность второго порядка в трёхмерном пространстве, задаваемая в декартовых координатах уравнением
 (однополостный гиперболоид),


где a и b — действительные полуоси, а c — мнимая полуось;

или
 (двуполостный гиперболоид),


где a и b — мнимые полуоси, а c — действительная полуось. [1]

Если a = b, то такая поверхность называется гиперболоидом вращения. Однополостный гиперболоид вращения может быть получен вращением гиперболы вокруг её мнимой оси, двуполостный — вокруг действительной. Двуполостный гиперболоид вращения также является геометрическим местом точек P, модуль разности расстояний от которых до двух заданных точек A и B постоянен: . В этом случае A и B называются фокусами гиперболоида.[2]

Однополостный гиперболоид является дважды линейчатой поверхностью; если он является гиперболоидом вращения, то он может быть получен вращением прямой вокруг другой прямой, скрещивающейся с ней.

Содержание

В науке и технике

Свойство двуполостного гиперболоида вращения отражать лучи, направленные в один из фокусов, в другой фокус, используется в телескопах системы Кассегрена и в антеннах Кассегрена.

Галерея

В искусстве

В архитектуре

Линейчатая конструкция, имеющая форму однополостного гиперболоида, является жёсткой: если балки соединить шарнирно, гиперболоидная конструкция всё равно будет сохранять свою форму под действием внешних сил.

Для высоких сооружений основную опасность несёт ветровая нагрузка, а у решётчатой конструкции она невелика. Эти особенности делают гиперболоидные конструкции прочными, несмотря на невысокую материалоёмкость.

Примерами гиперболоидных конструкций являются:

В литературе

См. также

Примечания
  1. Энциклопедия Математика, 2002, с. 156.
  2. Энциклопедия Математика, 2002, с. 157.
  3. Элементы линейной алгебры и аналитической геометрии на базе пакета «Mathematica». Дата обращения: 1 августа 2017. Архивировано 1 августа 2017 года.


Литература
  • Энциклопедия МАТЕМАТИКА. — официальное. — Москва: Издательство «Дрофа», 2002. — 845 с. — ISBN 5-85270-278-1.


Ссылки
Downgrade Counter