Меню

Главная
Случайная статья
Настройки
Октаэдральное число
Материал из https://ru.wikipedia.org

Октаэдральное число — разновидность многогранных фигурных чисел. Поскольку октаэдр можно рассматривать как две квадратные пирамиды, склеенные своими основаниями (см. рисунок), октаэдральное число определяется как сумма двух последовательных квадратных пирамидальных чисел[1]:


Общая формула[2] для -го по порядку октаэдрального числа :


Первые из октаэдральных чисел (последовательность A005900 в OEIS):


Рекуррентная формула[1]:


Производящая функция последовательности[1]:


Содержание

Связь с фигурными числами других типов

Данное выше определение связало октаэдральные числа с квадратными пирамидальными. Связь с тетраэдральными числами :


Геометрически эта формула означает, что если наклеить по тетраэдру на четыре не смежные грани октаэдра, то получится тетраэдр удвоенного размера.

Ещё один вид связи[1]:


Эта формула вытекает из определения и того факта, что квадратное пирамидальное число есть сумма двух тетраэдральных. Другое её истолкование: октаэдр может быть разделён на четыре тетраэдра, каждый из которых имеет две изначально смежные грани.

Связь с тетраэдральными и кубическими числами:


Разность двух последовательных октаэдральных чисел есть центрированное квадратное число[1]:


Гипотеза Поллока

В 1850 году британский математик-любитель, член Королевского общества сэр Джонатан Фредерик Поллок. выдвинул предположение[3], что каждое натуральное число является суммой не более семи октаэдральных чисел. Гипотеза Поллока до сих пор не доказана и не опровергнута. Компьютерная проверка показала, что, скорее всего:
  • 309 — самое большое число, которое требует ровно семь слагаемых;
  • 11 579 — последнее число, требующее шесть слагаемых;
  • 65 285 683 — последнее число, требующее пять слагаемых.


Если гипотеза Поллока верна, то доказано, что должны существовать сколь угодно большие числа, нуждающиеся в четырёх слагаемых[4][5].

Применение

В химии октаэдрические числа могут использоваться, чтобы описать числа атомов в октаэдрических кластерах (см. «магические кластеры»)[6][7].

Примечания
  1. 1 2 3 4 5 Деза Е., Деза М., 2016, с. 82—85.
  2. Conway, John Horton; Guy, Richard K. (1996), The Book of Numbers, Springer-Verlag, p. 50, ISBN 978-0-387-97993-9.
  3. Frederick Pollock. On the extension of the principle of Fermat's theorem on the polygonal numbers to the higher order of series whose ultimate differences are constant. With a new theorem proposed, applicable to all the orders (англ.) // Abstracts of the Papers Communicated to the Royal Society of London : journal. — 1850. — Vol. 5. — P. 922—924. — .
  4. Деза Е., Деза М., 2016, с. 239.


Литература


Ссылки
Downgrade Counter