Меню

Главная
Случайная статья
Настройки
Основания (химия)
Материал из https://ru.wikipedia.org

Основания — химические соединения, способные образовывать ковалентную связь с протоном (основание Брёнстеда) либо с вакантной орбиталью другого химического соединения (основание Льюиса

Частным случаем оснований являются щёлочи — растворимые основные гидроксиды. Реакции оснований с кислотами называют реакциями нейтрализации.

Содержание

История

Понятие основания сформировалось в XVII веке и было впервые введено в химию французским химиком Гийомом Франсуа Руэлем в 1754 году. Он отметил, что кислоты, известные в те времена как летучие жидкости (например, уксусная или соляная кислоты), превращаются в кристаллические соли только в сочетании с конкретными веществами. Руэль предположил, что эти вещества служат «основаниями» для образования солей в твёрдой форме[3].

Единая теория кислот и оснований была впервые представлена шведским физикохимиком Сванте Аррениусом в 1887 году. В рамках своей теории Аррениус определял кислоту как вещество, при диссоциации которого образуются протоны H+, а основание — как вещество, дающее при диссоциации гидроксид-ионы OH[4]. Теория Аррениуса, однако, имела свои недостатки — например, она не учитывала влияние растворителя на кислотно-основное равновесие, а также была неприменима к неводным растворам[5].

В 1924 году Э. Франклином была создана сольвентная теория, согласно которой основание определялось как соединение, которое при диссоциации увеличивает число тех же анионов, которые образуются при диссоциации растворителя[4].

Современное определение

С 1923 года основание стали определять в рамках теорий Брёнстеда-Лоури и Льюиса, которые широко применяются и в настоящее время.

Основание в теории Брёнстеда-Лоури

В протонной теории кислот и оснований, выдвинутой в 1923 году независимо датским учёным Йоханнесом Брёнстедом и английским учёным Томасом Лоури, основанием называется соединение или ион, способный принимать (отщеплять) протон от кислоты[6]. Соответственно, кислота Брёнстеда является донором протонов, а взаимодействие кислоты с основанием сводится к передаче протона. При реакции основания Брёнстеда B с кислотой, например, с водой, основание превращается в сопряжённую кислоту BH+, а кислота становится сопряжённым основанием[4]:



Основание в теории Льюиса

Согласно электронной теории, предложенной в 1923 году американским физикохимиком Гилбертом Льюисом, основание — это вещество, способное отдавать электронную пару на образование связи с кислотой Льюиса[7]. Основаниями Льюиса могут быть амины R3N, спирты ROH, простые эфиры ROR, тиолы RSH, тиоэфиры RSR, анионы, соединения с -связями[8]. В зависимости от орбитали, на которой расположена участвующая в реакции пара электронов, основания Льюиса подразделяют на n-, - и -типы — электронные пары для этих типов расположены соответственно на несвязывающих, - и -орбиталях[4].

Понятия основания в теориях Льюиса и Брёнстеда-Лоури совпадают: согласно обеим теориям основания отдают пару электронов на образование связи. Разница заключается лишь в том, куда расходуется эта электронная пара. Основания Брёнстеда за её счёт образуют связь с протоном, а основания Льюиса — с любыми частицами, имеющими вакантную орбиталь. Таким образом, существенные различия этих теорий касаются понятия кислоты, а не основания[4][8].



Теория Льюиса не предусматривает количественной оценки способности оснований реагировать с кислотами Льюиса. Однако, для качественной оценки широко применяется принцип жёстких и мягких кислот и оснований Пирсона (принцип ЖМКО), согласно которому жёсткие кислоты предпочтительно реагируют с жёсткими основаниями, а мягкие кислоты — с мягкими основаниями. По Пирсону, жёсткими основаниями являются основания, донорный центр которых обладает низкой поляризуемостью и высокой электроотрицательностью[9][10]. Напротив, мягкими основаниями являются донорные частицы с высокой поляризуемостью и низкой электроотрицательностью[10]. Жёсткие и мягкие кислоты обладают такими же свойствами как жёсткие и мягкие основания, соответственно, с той разницей, что они являются акцепторными частицами[11].
Классификация оснований и кислот в рамках принципа ЖМКО[8][12]
Жёсткие основания Промежуточные основания Мягкие основания
OH, RO, F, Cl, RCOO, NO3, NH3, RNH2, H2O, ROH, SO42, CO32, R2O, NR2, NH2 Br, C6H5NH2, NO2, C5H5N RS, RSH, I, H, R3C, алкены, C6H6, R3P, (RO)3P
Жёсткие кислоты Промежуточные кислоты Мягкие кислоты
H+, Li+, Na+, K+, Mg2+, Ca2+, Al3+, Cr3+, Fe3+, B(OR)3, AlR3, AlCl3, SO3, BF3, RCO+, CO2, RSO2+ Cu2+, Fe2+, Zn2+, SO2, R3C+, C6H5+, NO+ Ag+, Cu+, Hg2+, RS+, I+, Br+, Pb2+, BH3, карбены


Критерий ЖМКО не имеет количественных параметров, однако основания Льюиса можно приблизительно расположить в ряды по их льюисовской основности. Например, мягкость оснований убывает в следующих рядах[8]:





Основание в общей теории Усановича

В общей теории кислот и оснований, созданной М. И. Усановичем в 1939 году, основание определено как вещество, отдающее анионы (или электроны) и принимающие катионы. Таким образом, в рамках теории Усановича в понятие основания входят как основания Брёнстеда, так и основания Льюиса, а также восстановители[5]. Кроме того, само понятие основности, как и кислотности, в общей теории Усановича рассматривается как функция вещества, проявление которой зависит не от самого вещества, а от его партнёра по реакции[13].

Сила оснований

Количественное описание силы оснований

Теория Брёнстеда-Лоури позволяет количественно оценить силу оснований, то есть их способность отщеплять протон от кислот. Это принято делать при помощи константы основности Kb — константы равновесия реакции основания с кислотой сравнения, в качестве которой выбрана вода. Чем выше константа основности, тем выше сила основания и тем больше его способность отщеплять протон[8]. Часто константу основности выражают в виде показателя константы основности pKb. Например, для аммиака, выступающего как основания Брёнстеда, можно записать[4][14]:





Для многоосновных оснований используют несколько значений констант диссоциации Kb1, Kb2 и т. д. Например, фосфат-ион может протонироваться трижды:





Силу основания можно также охарактеризовать константой кислотности его сопряжённой кислоты Ka (BH+), причём произведение константы основности Kb на константу Ka (BH+) равно ионному произведению воды для водных растворов[14] и константе автопротолиза растворителя в общем случае[8].





Из последнего уравнения также следует, что сила основания тем выше, чем ниже кислотность сопряжённой ему кислоты. Например, вода является слабой кислотой и при отщеплении протона превращается в сильное основание — гидроксид-ион OH[8].
Формула основания Формула сопряжённой кислоты pKb pKa (BH+) Формула основания Формула сопряжённой кислоты pKb pKa (BH+)
ClO4 HClO4 19 ± 0,5 5 ± 0,5 HPO42 H2PO4 6,80 7,20
HSO4 H2SO4 16,8 ± 0,5 2,8 ± 0,5 ClO HClO 6,75 7,25
H2O H3O+ 15,74 1,74 H2BO3 H3BO3 4,76 9,24
NO3 HNO3 15,32 1,32 NH3 NH4+ 4,75 9,25
HOOC-COO (COOH)2 12,74 1,26 CN HCN 4,78 9,22
HSO3 H2SO3 12,08 1,92 CO32 HCO3 3,67 10,33
SO42 HSO4 12,04 1,96 HOO H2O2 11,62 3,38
H2PO4 H3PO4 11,88 2,12 PO43 HPO42 1,68 12,32
F HF 10,86 3,14 OH H2O 1,74 15,74
NO2 HNO2 10,65 3,35 NH2 NH3 (ж.) 19 33
CH3COO CH3COOH 9,24 4,76 H H2 24,6 38,6
SH H2S 6,95 7,05 СH3 СH4 ~44 ~58


Влияние растворителя

На кислотно-основное равновесие значительное влияние оказывает растворитель. В частности, для водных растворов было обнаружено, что все основания с константами основности pKb < 0 имеют одинаковые свойства (например, pH их растворов практически одинаков при равных концентрациях). Объясняется это тем, что такие основания в воде практически нацело превращаются в гидроксид-ион OH, который является единственным основанием в растворе. Так, все основания с pKb < 0 (амид натрия NaNH2, гидрид натрия NaH и др.) дают эквивалентное количество гидроксид-ионов в водных растворах, выравниваясь между собой по силе. Данное явление получило название нивелирующего эффекта растворителя. Аналогичным образом, в водных растворах выравниваются по силе и очень слабые основания с pKb > 14[15][16].

Основания с pKb от 0 до 14 в воде частично протонированы и находятся в равновесии с сопряжённой кислотой, а их свойства в растворе зависят от значения pKb. В этом случае говорят о дифференцирующем эффекте растворителя. Интервал pKb, в котором основания дифференцированы по силе, равен показателю константы автопротолиза растворителя. Для разных растворителей этот интервал различен (14 для воды, 19 для этанола, 33 для аммиака и т. д.), соответственно, и набор дифференцированных и нивелированных оснований для них разный[17].

В растворителях, обладающих выраженными кислотными свойствами, все основания становятся более сильными и большее число оснований нивелируется по силе. Например, уксусная кислота уравнивает большинство известных оснований по силе со своим сопряжённым основанием — ацетат-ионом CH3COO. Напротив, основные растворители (аммиак) служат дифференцирующими растворителями для оснований[18].

Влияние строения основания

Существует несколько факторов, которые определяют относительную силу органических и неорганических оснований и которые связаны с их строением. Часто несколько факторов действуют одновременно, поэтому трудно предсказать их суммарное влияние. Среди наиболее значимых можно выделить следующие факторы.
  • Индуктивный эффект (эффект поля). При повышении доступности электронной пары основания его сила возрастает. По этой причине введение электронодонорных заместителей в основание способствует проявлению их основных свойств. Например, введение алкильных заместителей в молекулу аммиака приводит к более сильным основаниям, чем сам аммиак[19]. Напротив, введение акцепторных заместителей в молекулу понижает силу основания[8].
Константы основности pKb для аммиака и простейших аминов[19]
Аммиак
NH3
Метиламин
CH3NH2
Этиламин
C2H5NH2
Диметиламин
(CH3)2NH
Диэтиламин
(C2H5)2NH
Триметиламин
(CH3)3N
Триэтиламин
(C2H5)3N
4,75 3,36 3,33 3,23 3,07 4,20[К 1] 3,12[К 1]
  • Мезомерный эффект (резонансный эффект). Электронодонорные и электроноакцепторные заместители также оказывают, соответственно, положительное и отрицательное влияние на силу основания при наличии сопряжения с парой электронов центрального атома основания. В таком случае говорят о мезомерном эффекте. Данный эффект приводит к тем же последствиям, что и индуктивный: различается лишь механизм их действия. Так, пара-нитроанилин является более слабым основанием, чем анилин (pKb равны 12,89 и 9,40 соответственно) из-за акцепторного влияния нитрогруппы, которая при участии -связей бензольного кольца находится в сопряжении с парой электронов атома азота аминогрппы и снижает её доступность[20].
Эффект сопряжения проявляется также в том случае, если электронная пара основания находится в системе сопряжения, например, с ароматической системой или двойной связью. В таком случае основания имеет меньшую силу. Например, амиды и анилины являются гораздо более слабыми основаниями, чем амины[19].
  • Корреляция с расположением атомов в периодической системе. Чем выше электроотрицательность атома, тем ниже сила основания с их участием в качестве центрального атома. Так, сила основания понижается при движении по периоду периодической системы слева направо. Также основность понижается при переходе по группе сверху вниз, что связано с увеличением радиуса основного атома и, следовательно, меньшей плотностью отрицательного заряда на нём, что в итоге снижает силу связывания положительно заряженного протона[20].




  • Гибридизация. Сила органических оснований понижается, если центральный атом связан с другим атомом кратными связями. Так, при переходе от аминов к иминам и нитрилам основность уменьшается. Это объясняется тем, что электронная пара в этих соединениях располагается на sp3-, sp2- и sp-гибридных орбиталях атома азота соответственно, то есть в данном ряду электронная пара приближается по характеру к s-электронам, приближаясь к атомному ядру и становясь менее доступной[19].




Супероснования

Основания в органической химии
Downgrade Counter