Меню

Главная
Случайная статья
Настройки
Соответствие Галуа
Материал из https://ru.wikipedia.org

Соответствие Галуа (связь Галуа) — теоретико-порядковое соотношение между двумя математическими структурами, более слабое, чем изоморфизм, обобщающее связь из теории Галуа между подполями расширения и упорядоченной по включению системой подгрупп соответствующей ему группы Галуа. Понятие может быть распространено на любые структуры, наделённые отношением предпорядка.

Понятие введено Гарретом Биркгофом в 1940 году, им же и Ойстином Оре в 1940-е годы установлены основные свойства[1]. Изначальное определение — антимонотонное

Замыкание Галуа — операция, являющаяся замыканием, образованная композицией компонент соответствия Галуа; в антимонотонном случае обе возможные композиции функций соответствия образуют замыкания, в монотонном — только одна из таких композиций.

Соответствие Галуа широко используется в приложениях, в частности, играет основополагающую роль в анализе формальных понятий (методологии анализа данных средствами теории решёток).

Содержание

Антимонотонное соответствие Галуа

Антимонотонное определение изначально дано Биркгофом и напрямую соответствует связи в теории Галуа. Согласно этому определению, соответствием Галуа называется всякая пара функций и между частично-упорядоченными множествами и , удовлетворяющая следующими соотношениям:
  • если , то (антимонотонность ),
  • если , то (антимонотонность ),
  • (экстенсивность ),
  • (экстенсивность ).


Композиции и оказываются монотонными, а также обладают свойством идемпотентности ( и ), таким образом, являются замыканиями на и соответственно.

Определение антимонотонного соответствия Галуа для антимонотонных функций и следующему условию (Юрген Шмидт[нем.], 1953[2][3]): тогда и только тогда, когда .

По аналогии с полярами в аналитической геометрии, связанные антимонотонным соответствием Галуа функции называют полярностями[4].

Монотонное соответствие Галуа

Монотонные функции и находятся в монотонном соответствии Галуа, если выполнены следующие условия:
  • ,
  • .


Эквивалентным данному определению является выполнение условия, двойственного условию Шмидта для антимонотонного варианта: тогда и только тогда, когда , часто оно принимается за начальное определение[5].

В случае монотонного соответствия Галуа также говорят о сопряжённости функций, так как в теории категорий такое соответствие даёт сопряжённые функторы

Оператором замыкания в монотонном соответствии Галуа является композиция , при этом композиция замыканием не является, так для неё вместо экстенсивности выполнено обратное условие (функцию с таким набором свойств иногда называют ядерным оператором[6] или козамыканием).

Сопряжённые функторы

Всякое частично-упорядоченное множество может быть рассмотрено как категория, в которой для каждой пары объектов множество морфизмов состоит из единственного морфизма, если и пусто в противном случае. Для категорий, порождённых таким образом из частично-упорядоченных множеств и , отображения и , находящиеся в монотонном соответствии Галуа, являются сопряжёнными функторами.

Сопряжёнными функторами также являются находящиеся в антимонотонном соответствии Галуа отображения и ( — категория, двойственная , то есть, полученная обращением морфизмов)[7].

Свойства

Композиция соответствий

Соответствие Галуа, как в антимонотонной, так и в монотонной форме, может быть подвергнуто операции композиции — если заданы находящиеся в соответствии Галуа пары отображений и , то композиция:


вновь является соответствием Галуа.

Примеры

Теория Галуа и обобщения

В теории Галуа устанавливается соответствие между системой промежуточных подполей алгебраического расширения поля и системой подгрупп группы Галуа этого расширения.

Пример из теории Галуа может быть естественно обобщен: вместо группы автоморфизмов поля можно рассматривать произвольную группу , действующую на множестве отображением , и отображения между упорядоченными по включению булеанами и . В этом случае отображения и , определяемые следующим образом:
(выделяет подгруппу в , оставляющую на месте все точки при действии ),
(сопоставляет множеству множество неподвижных точек автоморфизмов при действии )


находятся в антимонотонном соответствии Галуа[7].

Следующее обобщение состоит в рассмотрении произвольных множеств, между которыми задано произвольное бинарное отношение и отображений между булеанами этих множеств и , определяемых таким образом:
,
.


В этом случае и также находятся в антимонотонном соответствии Галуа.

Булеан и обобщения

C упорядоченным по включению булеаном произвольного множества и с некоторым зафиксированным его подмножеством может быть связано монотонное соответствие Галуа между отображениями , задаваемыми следующим образом:
,
.


Такое соотношение может быть установлено в любой алгебре Гейтинга, в частности, во всякой булевой алгебре (в булевых алгебрах в терминах алгебры логики роль верхней сопряжённой функции играет конъюнкция, а нижней сопряжённой — материальная импликация).

Полные решётки
Downgrade Counter