Меню

Главная
Случайная статья
Настройки
Порошковое пожаротушение
Материал из https://ru.wikipedia.org

Порошковое пожаротушениетушение пожара мелкораздробленными минеральными солями. Для их подачи в очаг горения используются технические средства пожаротушения: огнетушители, автоматические установки пожаротушения, пожарные автомобили порошкового пожаротушения.[1] В ряде случаев порошки являются единственным огнетушащим веществом, пригодным для тушения специфических типов пожаров[2]:172 (например, при горении щелочных металлов).

Содержание

История применения

Первые упоминания о применении порошковых огнетушащих веществ относятся к 1770 году, когда артиллерийский полковник Рот потушил пожар в магазине города Эслинген (Германия), забросив в помещение бочку, специально начиненную для этих целей алюминиевыми квасцами и содержащую пороховой заряд для распыления порошка[3].

13 ноября 1863 года Д. Ляпунов получил от Российского патентного ведомства первую привилегию на огнегасительный порошковый состав. Он состоял из 5 частей нашатыря, 12 частей поваренной соли и 3 частей очищенного поташа. Порошок следовало растворить в воде и подавать в очаг пожара насосом[4].

В конце XIX века в России Н. Б. Шефталем был создан взрывной огнетушитель «Пожарогас», заполняемый двууглекислой содой, квасцами или сернокислым аммонием с примесью до 10 % инфузорной земли и такого же количества асбестовых очёсов. Подрыв осуществлялся посредством бикфордова шнура, обеспечивавшего задержку 12—15 секунд с момента воспламенения. Для предупреждения о скором взрыве к шнуру крепились хлопушки, срабатывавшие через каждые 3—4 секунды горения. «Пожарогас» выпускался в модификациях весом 4, 6 и 8 кг[4].

В 1938 году журнал «Popular Science» сообщал о испытаниях бомб из папье-маше, наполненных порошком. Взрыв и распыление порошка происходили при температуре 200°C[5].

Впервые с проблемой тушения металлов в СССР столкнулись во время Великой Отечественной войны в связи с тушением немецких зажигательных авиабомб. В состав термитных составов входили металлы.[6] В блокадном Ленинграде для обезвреживания зажигательных бомб применялся песок.[7]

В СССР интенсивное развитие порошкового пожаротушения началось в 1960-х годах. Это было связано с необходимостью обеспечения огнетушащими средствами атомных электростанций, на которых в качестве теплоносителя использовался натрий[8].:47

В 1980-х годах в СССР на ряде предприятий были проведены эксперименты по тушению порошками пожаров и загораний. Было выяснено, что порошком хорошо тушатся твердые горючие вещества с гладкой поверхностью. Не были потушены твердые вещества, имеющие пустоты и неровности. Порошок из огнетушителя потушил горючую жидкость в ёмкости, но то же количество жидкости, разлитое по неровной поверхности потушить не удалось. Порошок сбивает пламя с кабельных трасс, но через короткий промежуток времени кабели вновь загорались, несмотря на наличие на них порошка. Порошком сбивается пламя с двигателя автомобиля, но для тушения салона автомобиля необходимо полностью засыпать салон порошком[9].

Огнетушащие порошковые составы

Основные свойства

Порошки условно можно разделить на порошки общего назначения (ПФ, ПСБ, ПИР АНТ) — для тушения пожаров классов А, В, С, и специального назначения, например: МГС — для тушения натрия и лития, PC — для тушения щелочных металлов и др. В России организовано производство порошков ПСБ-3 (пожары классов В, С; тушение электроустановок), ПИРАНТ-А (пожары классов А, В, С; тушение электроустановок) и ПХК (пожары классов В, С, D; тушение электроустановок). Таким образом, перекрываются все существующие классы пожаров, а выбор порошка определяется условиями защищаемого объекта. Порошки хранят в специальных упаковках, предохраняющих их от увлажнения, и подают в очаг горения сжатыми газами. Порошки нетоксичны, малоагрессивны, сравнительно дёшевы, удобны в обращении[10].

До настоящего времени механизм огнетушащего действия порошков ещё недостаточно ясен. Огнетушащая способность порошков обусловлена действием следующих факторов:
  • охлаждением зоны горения в результате затрат тепла на нагрев частиц порошка, их частичное испарение и разложение в пламени;
  • разбавлением горючей среды газообразными продуктами разложения порошка или непосредственно порошковым облаком;
  • эффектом огнепреграждения, достигаемым при прохождении через узкие каналы, создаваемые порошковым облаком;
  • ингибирование химических реакций, обуславливающих развитие процесса горения, газообразными продуктами разложения и испарения порошков или гетерогенным обрывом цепей на поверхности порошков или твёрдых продуктов их разложения[11].


Обоснованные параметры интенсивности подачи порошка в автоматическом режиме существуют только для тушения пожаров металлов. Для тушения пожаров других классов необходимо определять интенсивность опытным путём для конкретной установки пожаротушения или модуля[12].:65

При экспериментальном исследовании большой группы солей в виде порошка, было выяснено, что одни порошки слабо влияют на скорость горения, а другие даже при незначительной концентрации резко снижают скорость распространения пламени. Первая группа (например Al2O3, CuO) была названа термическими порошками. Термические порошки приводят к гашению охлаждением пламени. Вторая группа была названа химическими порошками[13].:115

Ряд ингибирующей эффективности веществ (в порядке убывания) выглядит следующим образом: LiF > LiCl > NaF > KF > NaCl > KI > NaI > NaBr > KCl > K2CO3 > Na2CO3 > Na2SO4 > Al2O3 > CaCO3[14].:123

В результате исследования ингибирования воспламенения метана в воздухе выяснено, что по уменьшению огнетушащей эффективности соли располагаются в следующем порядке: K2C2O4•H2O > NaCl > K2Cr2O7 > KCl > K2CO3 > Na2CO3 > Na2SO4 > NaF > NaHCO3[8]:15

Ряд теплофизической эффективности веществ (в порядке убывания), построенный по величине удельного теплопоглощения, выглядит следующим образом: H2O > NH4Cl > NH4Al(SO4)2*12H2O >(NH4)2SO4 > CO(NH2)2 > NaHCO3 > (NH4)2HPO4 > Na2SO4 > CaCO3 > Al2O3 > NaCl > фреон 114В2 > KI[14].:201

Основные компоненты порошков:

В зависимости от основного составляющего компонента смеси выделяют три основные группы порошков на основе:
  • бикарбонатов щелочных металлов;
  • фосфорно-аммонийных солей;
  • хлоридов щелочных металлов[16].


Особое место занимал состав СИ-2 — крупнопористый силикагель, насыщенный хладоном 114B2[8].:4 Размер частиц порошка — до двух миллиметров, массовое соотношение компонентов 1:1. Этот порошок являлся средством тушения растворов, которые характеризовались отрицательными температурами самовоспламенения. Повышенная огнетушащая эффективность порошка была вызвана сочетанием эффекта частичной изоляции жидкости от воздуха и торможением реакции пламени одним из сильных ингибиторов горения — тетрафтордибромэтаном (фреон 114B2). Также существовал вариант, когда силикагель заменялся обожжённым перлитом. Это улучшало огнетушащие свойства порошка[8].:50

Перечень основных показателей качества огнетушащих порошков[17]:
  • показатель огнетушащей способности — масса порошка, необходимая для тушения из огнетушителя единицы площади открытой горящей поверхности или всего очага пожара, принятого в качестве модельного;
  • текучесть — способность порошка обеспечивать массовый расход через данное сечение в единицу времени под воздействием давления выталкивающего газа;
  • кажущаяся плотность — отношение массы порошка к занимаемому им объёму;[18]
  • устойчивость к термическому воздействию;
  • устойчивость к вибродействиям и тряске;
  • показатель слёживаемости — показатель, характеризующий способность огнетушащего порошка слёживаться под воздействием внешних факторов;[18]
  • срок сохраняемости.


Огнетушащая способность порошков общего назначения зависит не только от химической природы порошков, но и степени их измельчения. Огнетушащая способность порошков специального назначения практически не зависит от степени их измельчения[19]:353 Возможность подачи очень мелких порошков в зону горения затруднена, поэтому промышленные огнетушащие порошки общего назначения содержат фракцию 40-80 мкм, обеспечивающую доставку мелких фракций в зону горения.

При тушении из расположенных над очагом горения модулей на порошковую струю воздействуют восходящие конвективные потоки. При данных условиях подачи серийного порошка газопорошковая струя проникнет в зону горения, если скорость её фронта превышает скорость восходящих конвективных потоков[20].:10

Недостатком сухих огнетушащих материалов является их низкая охлаждающая способность. Поэтому при порошковом тушении возможны повторные вспышки от раскалённых в огне предметов[21]. Реальный охлаждающий эффект порошкового облака составляет не более 10—20 % тепла очага[16]. Модули порошкового пожаротушения кратковременного действия подают порошок в течение 5—30 секунд, тушение пожара такими модулями происходит через 2—8 секунд после подачи огнетушащего порошка. В дальнейшем происходит охлаждение конструкций. Модули порошкового пожаротушения импульсного действия создают высокую концентрацию огнетушащего порошка на время не более 1 секунды. В дальнейшем концентрация порошка снижается и при наличии конструкций, которые имеют температуру выше температуры воспламенения горючих материалов, возможно повторное воспламенение[22]. В условиях развитого пожара на участках, которые были потушены порошками, через 20—30 секунд возникает повторное горение и пожар развивается с прежней интенсивностью[2].:231

Одним из направлений повышения эффективности и универсальности применения порошковых составов является введение, кроме огнетушащего, второго действия — адсорбции горючего материала, в частности нефтепродуктов. Данные огнетушащие порошки получили название — огнетушащие порошки двойного назначения. Под вторым назначением понимается адсорбция нефтепродукта при его разливе. Адсорбция достигается путём введения в состав огнетушащего порошка природного минерала — шунгита с развитой удельной поверхностью[23].

Подклассы пожаров при горении металла (класс D):
  • D1 — горение лёгких металлов, за исключением щелочных (например, алюминия, магния и их сплавов);
  • D2 — горение щелочных и других подобных металлов (например, натрия, калия);
  • D3 — горение металлосодержащих соединений, (например, металлоорганических соединений, гидридов металлов)[24].


Для тушения пожаров металлов возможно применение огнетушащих порошков на основе карбоната натрия (состав ПС ОСТ 6-18-175-76 с огнетушащей способностью 30—40 кг/м горящей поверхности), хлоридов калия и натрия (состав ПГС ТУ 18-18.0-78 с огнетушащей способностью 25—30 кг/м, состав ПХ ТУ 6-18-12.0-78 с огнетушащей способностью 30—40 кг/м), окиси алюминия (глинозём ГОСТ 6912-74 с огнетушащей способностью 50 кг/м). Подача в очаг пожара этих порошков обеспечивает прекращение горения путём изоляции поверхности металла от окружающего очаг воздуха. Выбор компонентов огнетушащего средства для такого способа тушения осуществляется исходя из отсутствия химических реакций с горящим металлом[25].

Плотность большинства порошков выше, чем плотность металла, поэтому они тонут в расплавленном металле, что приводит к увеличению расхода таких порошков. Установлено, что при увеличении толщины слоя металла с 4 до 10 см их расход вырастает в пять раз[19].:369

Способы подачи порошка для тушения

При практическом использовании средств порошкового пожаротушения их огнетушащая способность зависит не только от свойств самого порошка, но и от способа его подачи в очаг пожара[16].

Насадок для подачи порошка используется непосредственно в защищаемом помещении с учётом необходимости распределения порошка по всему объёму помещения. Он может устанавливаться на распределительном трубопроводе установки пожаротушения, непосредственно на модуле пожаротушения,[26] на огнетушителе.[27]

Для формирования и направления струи огнетушащего порошка в очаг пожара используются порошковые пожарные стволы. Используются ручные и лафетные стволы. Ручные стволы используются при расходе порошка не более 5 кг/с, лафетные стволы имеют расход до 115 кг/с. Расстояние подачи порошка из ручных стволов составляет до 18 м, из лафетных — до 60 м.[28]

Режим подачи порошка характеризуется параметрами:
  • минимальным удельным количеством огнетушащего средства;
  • интенсивностью подачи средства;
  • временем тушения[8].:22


Порошковыми составами тушат по поверхности и по объёму зоны горения. При тушении по поверхности огнетушащее действие порошков заключается в основном в изоляции поверхности горения от доступа к ней воздуха, а при объемном тушении действие проявляется в ингибировании процесса горения[29].:100

Способ подачи зависит от класса пожара и типа применяемого порошка. Для тушения порошками общего назначения органических горючих веществ и материалов используется тушение по объёму. Порошки специального назначения предназначены для тушения по поверхности[19].:353 Такие порошки применяются для тушения металлов и металлосодержащих соединений. Для тушения металла основной задачей при подаче огнетушащего порошка является создание на поверхности очага горения слоя порошкового покрытия, желательно равной высоты, что достигается путём использования успокоителей, присоединяемых к подающему устройству (на выходе подающего ствола) огнетушителей, порошковых автомобилей. Использование насадка-успокоителя необходимо при тушении порошков металлов и их гидридов, при этом практически предотвращается образование аэровзвеси огнетушащего порошка[30]. Успокоитель снижает скорость и кинетическую энергию порошковой струи[31].

Также по поверхности возможно тушить древесину — доски в штабеле. Тушение происходит за счёт изоляции горящей поверхности защитной плёнкой, которая образуется при плавлении частиц порошка (огнетушащий состав ПФ)[29].:102 Этот порошковый состав также способен тушить пожары волокнистых тлеющих материалов. Эффект тушения связан не только с созданием на поверхности материала вязкой плёнки из полифосфатов, но и с ингибированием пламени[19].:366

Одноструйный вариант

При подаче порошка из ручного ствола длина струи воздушно порошковой смеси составляет 10—15 м, при подаче из лафетного ствола длина струи составляет 20—25 м.[2]:178 Огнетушащая струя по концентрации порошка делится на три участка. Концентрация по участкам распределяется примерно в соотношении: 40 %, 40 %, 20 %. Наиболее эффективной для тушения большинства жидкостей и газов является средняя часть струи. У ручных стволов средняя часть струи расположена в области 4—6 м от начала струи, у лафетных — 10—12 м. Конечная часть струи (2—6 м), где концентрация порошка меньше, может использоваться для тушения керосина, дизтоплива, масел и т. д.[29]:152

В исследованиях Ульянова Н. И. приводится модель газопорошковой струи, ориентированной на расчёт порошкового пожаротушения. Схематически порошковая струя представляется состоящая из двух участков: начального с большой концентрацией частиц порошка и основного, заполненного движущимися частицами порошка с большим количеством увлечённого атмосферного воздуха. Границы переходного участка являются продолжением границ начального участка. При продолжении границ основного участка они пересекаются в точке, называемой полюсом основного участка. Переходное сечение струи совпадает с началом основного участка, и в нём происходит излом границ струи[20].:8

Расстояние от среза струеобразующего насадка до переходного сечения порошковой струи:

,

где:
  •  — выходной диаметр насадка, м;
  •  — тангенс половины угла расширения на начальном участке порошковой струи;
  •  — объемная концентрация аэросмеси (порошок/воздух) на выходе из насадка, м/м;
  •  — истинная плотность порошка, кг/м;
  • - плотность воздуха, кг/м.


Выражение для расчёта расстояния от среза струеобразующего насадка до полюса основного участка представляется как:

.

Основной участок струи разделялся на две зоны. Граница между зонами определяется выражением:



Первая зона характеризовалась изменением скорости в соответствии с уравнением:

, где:
  •  — мгновенная скорость фронта порошковой струи на расстоянии x от среза струеобразующего насадка, м/c;
  •  — начальная скорость порошковой струи, м/с.


На границе зон расчётное отношение равнялось 0,38. Далее по длине струи более резкое уменьшение скорости описывается следующим уравнением:

.

Тангенс половины угла расширения на начальном участке порошковой струи определяетя по формуле:



Коэффициент 0,119 не является постоянным и зависит от среднего диаметра частиц порошка.

Многоструйный вариант

Для тушения пожара порошковым составом возможно формирование одной группы направленных на очаг пожара струй газопорошковой смеси. Для этого входной патрубок формирователя струи имеет на своём конце насадок, выполненный в виде установленных симметрично относительно продольной плоскости рассекателей потока треугольного сечения[32].

Подача взрывчатыми веществами

При попадании порошка в зону горения под действием взрывчатого вещества, кроме огнетушащего действия порошка, дополнительно происходит флегматизация процесса горения под действием:
  • отрыва фронта пламени от горючей нагрузки;
  • дробления фронта пламени на отдельные участки, не способные поддерживать горение;
  • разбавления зоны горения инертными продуктами взрыва[33].:77


У импульсных передвижных установок порошкового пожаротушения огнетушащее действие порошка на очаг пожара сочетается с действием ударной волны[34]. Высокая эффективность импульсных технологий пожаротушения достигается за счёт мощного динамического воздействия на очаг пожара, ингибирование процесса горения при применении порошковых огнетушащих составов[35]. Для взрывозащиты шахт используются мортиры порошкового пожаротушения, которые при срабатывании под высоким давлением выбрасывают огнетушащий порошок в пространство горных выработок в виде сложного двухфазного потока высокотурбулентной газопорошковой смеси, оказывая противоударное воздействие на фронт ударной волны и затем флегматизируя фронт пламени[36].

В процессе распыления порошков с помощью взрыва происходит их дополнительное измельчение, в результате которого может достигаться активизация поверхностных атомов. При взрывном дроблении частиц вещества поверхности разломов проходят не только между молекулами, но и между атомами. Образованные частицы ингибирующего порошка имеют на поверхности химические центры, которые активно реагируют с другими молекулами. Со временем химическая активность пыли уменьшается, так как химические центры насыщаются в результате реакций с кислородом воздуха. В конечном счёте пыль порошка может стать химически неактивной[37].

Вихрепорошковый способ тушения

В 1978 году сотрудники Управления пожарной охраны Новосибирской области обратились с просьбой в лабораторию Института гидродинамики СО АН СССР разработать технологию использования вихревых колец для тушения пожаров.
Downgrade Counter