Меню

Главная
Случайная статья
Настройки
Прямая Александрова
Материал из https://ru.wikipedia.org

Прямая Александрова (или длинная прямая) — топологическое пространство, один из основных контрпримеров, используемых в топологии[1]: обычная вещественная прямая состоит из счётного числа отрезков , расположенных друг за другом, а прямая Александрова строится из несчётного числа таких отрезков. Построена Павлом Александровым в 1924 году[2].

Замкнутая прямая Александрова определяется как декартово произведение первого несчётного ординала и полуинтервала , снабжённое топологией порядка (то есть её база — интервалы ), индуцированной лексикографическим порядком на . Открытая прямая получается удалением наименьшего элемента .

Прямая Александрова равномощна вещественной прямой и является нормальным пространством, как и любое пространство с топологией порядка, однако обладает рядом необычных свойств. В частности, её топология неметризуема, она секвенциально компактна, но не компактна, линейно связна, локально связна и односвязна, но не стягиваема. Более того, прямая Александрова имеет структуру несепарабельного топологического многообразия[3], несмотря на непаракомпактность, и удовлетворяет первой аксиоме счётности, но не второй. На ней также можно ввести структуру дифференцируемого[4] и даже аналитического[5] многообразия.

Примечания
  1. Steen, Lynn Arthur. Counterexamples in Topology / Lynn Arthur Steen, J. Arthur Jr. Seebach. — Dover reprint of 1978. — Berlin, New York : Springer-Verlag, 1995. — P. 71–72. — ISBN 978-0-486-68735-3.
  2. P. Alexandroff. Uber die Metrisation der im Kleinen kompakten topologischen Rume // Math. Ann. — 1924. — Т. 92. — С. 295—301. — doi:10.1007/BF01448011.
  3. Некоторые авторы требуют свойства сепарабельности и счётности базы в определении топологического многообразия, см. Shastri, Anant R. (2011), Elements of Differential Topology, CRC Press, p. 122, ISBN 9781439831632.
Downgrade Counter