Меню

Главная
Случайная статья
Настройки
Сходимость по распределению
Материал из https://ru.wikipedia.org

Сходимость по распределению — вид сходимости случайных величин: последовательность случайных величин сходится по распределению к случайной величине , если распределения соответствующих элементов слабо сходятся к распределению величины [1]. Используемые обозначения: , .

Случайная величина , определённая на вероятностном пространстве индуцирует распределение (вероятностную меру) ; соответственно, последовательность случайных величин сходится по распределению к случайной величине , если для любой непрерывной ограниченной функции :
.


С использованием теоремы о замене меры в интеграле Лебега, определение эквивалентно можно сформулировать как сходимость для математических ожиданий для любой непрерывной ограниченной функции :
,


иногда это определение используется как основное[2].

Другое эквивалентное определение — величины сходятся по распределению к , если их функции распределения сходятся к функции распределения предела во всех точках непрерывности:
.


Если все случайные величины в определении абсолютно непрерывны, и их плотности сходятся:


почти всюду, то . Обратное, вообще говоря, неверно.

Сходимость по вероятности (а следовательно и сходимость почти наверное и сходимость в среднем (то есть в при )) влечёт сходимость по распределению:
;


обратное, вообще говоря, неверно. Таким образом, сходимость по распределению может быть рассмотрена как самая слабая форма сходимости случайных величин.

Теорема Слуцкого позволяет складывать и умножать сходящиеся по вероятности и по распределению функции. Теорема Леви о непрерывности связывает сходимость случайных величин по распределению с поточечной сходимостью их характеристических функций.

Примечания
  1. Биллингсли, 1977, с. 38.
  2. Математическая энциклопедия, 1985.


Литература
Downgrade Counter