Меню
Главная
Случайная статья
Настройки
|
В математике, топологическая K-теория является подразделом алгебраической топологии. В начале своего существования она применялась для изучения векторных расслоений на топологических пространствах с помощью идей, признанных в настоящее время частью (общей) K-теории, введенной Александром Гротендиком . Ранние работы по топологической K-теории принадлежат Майклу Атья и Фридриху Хирцебруху.
Содержание
Определения
Пусть X — компактное хаусдорфово пространство и или . Тогда определяется как группа Гротендика коммутативного моноида конечномерных -векторных расслоений над
В качестве начального примера заметим, что
Существует редуцированная версия
Продолжается до длинной точной последовательности
Пусть Sn будет n-ой приведенной надстройкой пространства. Тогда определим:
Отрицательные индексы выбираются таким образом, чтобы кограничное отображение увеличивало размерность.
Часто имеет смысл рассматривать нередуцированную версию этих групп, определенную как:
Где это с отдельной выделенной точкой, помеченной знаком «+». [1]
Наконец, теорема Ботта о периодичности, сформулированная ниже, даёт нам теории с положительными индексами.
Свойства- Спектром K-теории является (с дискретной топологией на ), т.е. где [, ] обозначает классы отображений помеченных пространств с точностью до гомотопии, а BU - копредел классифицирующих пространств унитарных групп: Аналогично,
- Для вещественной K теории используется пространство BO .
- Принцип расщепления в топологической K-теории позволяет свести утверждения о произвольных векторных расслоениях к утверждениям о суммах одномерных расслоений.
- где T(E) - пространство Тома векторного расслоения E над X. Это выполняется когда E является спинарным расслоением.
- Топологическую K-теория можно обобщить до функтора на C*-алгебрах.
Периодичность Ботта
Периодичность, названную в честь Рауля Ботта, можно сформулировать так:
- и , где H - класс тавтологического расслоения на то есть на сфере Римана.
В вещественной K теории существует похожая периодичность, только по модулю 8.
Приложения
Два самых известных применения топологической K-теории принадлежат Фрэнку Адамсу . Сначала он решил задачу о единичном инварианте Хопфа, сделав вычисления с помощью операций Адамса . Затем он доказал верхнюю оценку числа линейно независимых векторных полей на сферах.
Характер Чженя
Майкл Атья и Фридрих Хирцебрух доказали теорему, которая связывает топологическую K-теорию CW-комплекса с его рациональными когомологиями. В частности, они показали, что существует гомоморфизм
такой, что
Существует алгебраический аналог, связывающий группу Гротендика когерентных пучков и кольцо Чоу гладкого проективного многообразия .
См. также
Ссылки
- Источник. Архивировано 17 апреля 2018 года.
Литература
|
|