Меню
Главная
Случайная статья
Настройки
|
Точки Торричелли — две точки, из которых все стороны треугольника видны либо под углом в 60°, либо под углом в 120°. Эти точки в треугольнике — «парные». Иногда эти точки называют точками Ферма или точками Ферма-Торричелли.
- Две Точки Торричелли — это точки пересечения отрезков, соединяющих вершины треугольника:
- c соответствующими свободными вершинами равносторонних треугольников, построенных на противолежащих сторонах треугольника (наружу) — первая точка Торричелли
- с соответствующими свободными вершинами правильных треугольников, построенных на противолежащих сторонах внутрь треугольника — вторая точка Торричелли.
Содержание
Свойства
Гипербола Киперта — описанная гипербола, проходящая через центроид и ортоцентр. Если на сторонах треугольника построить подобные равнобедренные треугольники (наружу или внутрь), а затем соединить их вершины с противоположными вершинами исходного треугольника, то три таких прямые пересекутся в одной точке, лежащих на гиперболе Киперта. В частности, на этой гиперболе лежат точки Торричелли и точки Наполеона (точки пересечения чевиан, соединяющие вершины с центрами построенных на противоположных сторонах правильных треугольников)[2].
Замечание
Кстати, на первом рисунке справа центры трёх равносторонних треугольников сами являются вершинами нового равностороннего треугольника (Теорема Наполеона). Кроме того, .
См. также
Примечания
- Yiu, 2010, с. 175–209.
- Акопян А. В., Заславский А. А.. Геометрические свойства кривых второго порядка. — 2-е изд., дополн. — 2011. — С. 125—126.
Литература
|
|