Меню

Главная
Случайная статья
Настройки
Уравнение Гамильтона — Якоби
Материал из https://ru.wikipedia.org

Уравнение Гамильтона — Якоби — уравнение вида


Здесь обозначает классическое действие,  — классический гамильтониан,  — обобщённые координаты.

Непосредственно относится к классической (неквантовой) механике, однако хорошо приспособлено для установления связи между классической механикой и квантовой, так как его можно, например, получить практически прямо из уравнения Шрёдингера в приближении быстроосциллирующей волновой функции (больших частот и волновых чисел).

В классической механике возникает обычно из специального канонического преобразования классического гамильтониана, которое приводит к этому нелинейному дифференциальному уравнению первого порядка, решение которого описывает поведение динамической системы.

Следует отличать уравнение Гамильтона — Якоби от уравнений движения Гамильтона и Эйлера — Лагранжа. Хотя это уравнение и выводится из них, оно представляет собой одно уравнение, описывающее динамику механической системы с любым количеством степеней свободы , в отличие от уравнений Гамильтона и уравнений Эйлера — Лагранжа.

Уравнение Гамильтона — Якоби помогает элегантно решить задачу Кеплера.

Содержание

Каноническое преобразование

Уравнение Гамильтона — Якоби немедленно следует из того факта, что для любой производящей функции (пренебрегая индексами) уравнения движения принимают один и тот же вид для и при следующем преобразовании:


Новые уравнения движения становятся


Уравнение Гамильтона — Якоби появляется из специфической производящей функции , которая делает тождественной нулю. В этом случае все его производные зануляются, и


Таким образом, в штрихованной системе координат система совершенно стационарна в фазовом пространстве. Однако мы ещё не определили, при помощи какой производящей функции достигается преобразование в штрихованную систему координат. Мы используем тот факт, что


Поскольку можно записать


что является уравнением Гамильтона — Якоби.

Решение

Уравнение Гамильтона — Якоби часто решают методом разделения переменных. Пусть некоторая координата (для определённости будем говорить о ) и соответствующий ей импульс входят в уравнение в форме


Тогда можно положить


где  — произвольная постоянная,  — обратная функция, и решать уравнение Гамильтона — Якоби уже с меньшим числом переменных. Если процесс можно продолжить по всем переменным, то решение уравнения примет вид


где  — произвольные постоянные,  — константа интегрирования. Напомним, что при этом является функцией конечной точки . Так как действие задаёт каноническое преобразование гамильтоновой системы, его производные по координатам — это импульсы в новой системе координат, поэтому они должны сохраняться:


Совместно с уравнениями для импульсов это определяет движение системы.

Также если в голономной системе с степенями свободы кинетическая энергия имеет вид и потенциальная энергия имеет вид где то интегрирование уравнения Гамильтона—Якоби приводит к квадратурам (решение можно представить в виде комбинации элементарных функций и интегралов от них), см. Теорема Лиувилля об интеграле уравнения Гамильтона — Якоби[1].

См. также

Примечания
  1. Бутенин, 1971, с. 167.


Литература
Downgrade Counter