Меню
Главная
Случайная статья
Настройки
|
Цилиндрической, или полуполярной, системой координат называют трёхмерную систему координат, являющуюся расширением полярной системы координат путём добавления третьей координаты (обычно обозначаемой ), которая задаёт высоту точки над плоскостью.
Точка даётся как . В терминах прямоугольной системы координат:
- — расстояние от до , ортогональной проекции точки на плоскость . Или то же самое, что расстояние от до оси .
- — угол между осью и отрезком .
- равна аппликате точки .
При использовании в физических науках и технике международный стандарт ISO 31-11 рекомендует использовать обозначения .
Цилиндрические координаты удобны при анализе поверхностей, симметричных относительно какой-либо оси, если ось взять в качестве оси симметрии. Например, бесконечно длинный круглый цилиндр (цилиндрическая поверхность) в прямоугольных координатах имеет уравнение , а в цилиндрических — очень простое уравнение . Отсюда и идёт для данной системы координат имя «цилиндрическая».
Содержание
Переход к другим системам координат
Поскольку цилиндрическая система координат — только одна из многих трёхмерных систем координат, существуют законы преобразования координат между цилиндрической системой координат и другими системами.
Декартова система координат
Орты цилиндрической системы координат связаны с декартовыми ортами следующими соотношениями:
и образуют правую тройку:
Обратные соотношения имеют вид:
Закон преобразования координат от цилиндрических к декартовым:
Закон преобразования координат от декартовых к цилиндрическим:
Якобиан равен:
Дифференциальные характеристики
Цилиндрические координаты являются ортогональными, поэтому метрический тензор имеет в них диагональный вид:
- Квадрат дифференциала длины кривой
Остальные равны нулю.
Дифференциальные операторы
Градиент в цилиндрической системе координат:
Лапласиан в цилиндрической системе координат:
Дивергенция в цилиндрической системе координат:
Ротор в цилиндрической системе координат:
Выражения длярадиус-вектора,скоростииускоренияв цилиндрических координатах
См. также
Литература- Халилов В.Р., Чижов Г.А., Динамика классических систем: Учеб. пособие. — М.: Изд-во МГУ, 1993. — 352 с.
|
|