Меню
Главная
Случайная статья
Настройки
|
Экспоненциальная запись в информатике и вычислительной математике — представление действительных чисел в виде мантиссы и порядка. Удобна для представления очень больших и очень малых чисел, а также для унификации их написания.
где
- N — записываемое число;
- M — мантисса;
- n — основание показательной функции;
- p (целое) — порядок;
- — характеристика числа.
Примеры:
1 000 000 (один миллион): ;
N = 1 000 000,
M = 1,0,
n = 10,
p = 6.
1 201 000 (один миллион двести одна тысяча): ;
N = 1 201 000,
M = 1,201,
n = 10,
p = 6.
1 246 145 000 (минус один миллиард двести сорок шесть миллионов сто сорок пять тысяч): ;
N = 1 246 145 000,
M = 1,246145,
n = 10,
p = 9.
0,000001 (одна миллионная): ;
N = 0,000001,
M = 1,0,
n = 10,
p = 6.
0,000000231 (двести тридцать одна миллиардная): ;
N = 0,000000231,
M = 2,31,
n = 10,
p = 7.
В логарифмических таблицах значения десятичных логарифмов чисел и функций также представлены мантиссами (порядок логарифма вычисляется без труда)[1].
Содержание
Нормализованная запись
Любое данное число может быть записано в виде многими путями; например 350 может быть записано как или .
В нормализованной научной записи порядок выбирается такой, чтобы абсолютная величина оставалась не меньше единицы, но строго меньше десяти (). Например, 350 записывается как . Этот вид записи, называемый также стандартным видом, позволяет легко сравнивать два числа. Кроме того, он удобен для десятичного логарифмирования: целая часть логарифма, записанного «в искусственной форме», равна порядку числа, дробная часть логарифма определяется из таблицы только по мантиссе, что было крайне важным до массового распространения калькуляторов в 1970-х годах.
В инженерной нормализованной записи (в том числе в информатике) мантисса обычно выбирается в пределах : [источник не указан 2189 дней].
В некоторых калькуляторах как опция может быть использована запись с мантиссой и с порядком, кратным 3, так, например, записывается как . Такая запись проста для чтения ( легче прочесть, как «640 миллионов», чем ) и удобна для выражения физических величин в единицах измерения с десятичными приставками: кило-, микро-, тера- и так далее.
Экспоненциальная запись числа в компьютере
Представление чисел в приложениях
Основная масса прикладных программ для компьютера обеспечивает представление чисел в удобной для восприятия человеком форме, то есть в десятичной системе счисления.
На компьютере (в частности в языках программирования высокого уровня) числа в экспоненциальном формате (его ещё называют научным) принято записывать в виде MEp,
где:
- E — экспонента (от англ. «exponent»), означающая «·10^» («…умножить на десять в степени…»),
Например:
(элементарный заряд в Кл);
(постоянная Больцмана в Дж/К);
(число Авогадро).
В программировании часто используют символ «+» для неотрицательного порядка и ведущие нули, а в качестве десятичного разделителя — точку:
.
Для улучшения читаемости иногда используют строчную букву e:
ГОСТ 10859-64 "Машины вычислительные. Коды алфавитно-цифровые для перфокарт и перфолент"[англ.] вводил специальный символ для экспоненциальной записи числа "", представляющий собой число 10, написанное мелким шрифтом на уровне строки. Такая запись должна была использоваться в АЛГОЛе. Этот символ включён в Unicode 5.2 с кодом U+23E8 "Decimal Exponent Symbol"[2].
Таким образом, например, современное значение скорости света могло быть записано как 2.99792458+08 м/с.
Внутренний формат представления чисел
Внутренний формат представления вещественных чисел в компьютере тоже является экспоненциальным, но основанием степени выбрано число 2 вместо 10. Это связано с тем, что все данные в компьютере представлены в двоичной форме (битами). Под число отводится определённое количество компьютерной памяти (часто это 4 или 8 байт). Там содержится следующая информация:
- Знаковый бит (он обычно занимает старшее место), который указывает знак числа. Установленный бит говорит о том, что число отрицательное (исключение может составлять число ноль — иногда он тоже может иметь установленный знаковый бит).
- Порядок — целое число, которое задаёт нужную степень двойки. Обычно это не истинная величина порядка, а сдвинутая на некоторую константу таким образом, чтобы число было неотрицательным. Так, наименьший возможный порядок (он отрицательный) представлен числом 0.
- Мантисса (обычно за исключением старшего бита, который всегда установлен в нормализованном числе).
Более подробно форматы представления чисел описаны стандартом IEEE 754-2008.
Следует
Примечания
- Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — изд. 13-е. — М.: Наука, 1985. — С. 33. — 544 с.
- Unicode Character Database: Derived Property Data (неопр.). Дата обращения: 18 декабря 2012. Архивировано 12 апреля 2019 года.
Ссылки
|
|