Меню

Главная
Случайная статья
Настройки
Эксцентриситет
Материал из https://ru.wikipedia.org

Эксцентриситет — числовая характеристика конического сечения, показывающая степень его отклонения от окружности. Обычно обозначается или .

Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия.

Содержание

Определение

Все невырожденные конические сечения, кроме окружности, можно описать следующим способом: выберем на плоскости точку и прямую и зададим вещественное число ; тогда геометрическое место точек , для которых отношение расстояний до точки и до прямой равно , является коническим сечением; то есть, если есть проекция на , то
.


Это число  называется эксцентриситетом конического сечения. Эксцентриситет окружности по определению равен 0.

Связанные определения
  • Точка называется фокусом конического сечения.
  • Прямая называется директрисой.


Коническое сечение вполярных координатах

Коническое сечение, один из фокусов которого находится в полюсе, задаётся в полярных координатах уравнением


где  — эксцентриситет, а  — другой постоянный параметр (так называемый фокальный параметр).

Легко показать, что это уравнение эквивалентно определению, данному выше. В сущности, оно может быть использовано в качестве альтернативного определения эксцентриситета, быть может, менее фундаментального, но удобного с аналитической и прикладной точек зрения; в частности, из него хорошо видна роль эксцентриситета в классификации конических сечений и определённым образом дополнительно проясняется его геометрический смысл.

Свойства
  • В зависимости от эксцентриситета, получится:
    • при  — гипербола. Чем больше эксцентриситет гиперболы, тем больше две её ветви похожи на параллельные прямые линии;
    • при  — парабола;
    • при  — эллипс;
    • для окружности полагают .
  • Эксцентриситет эллипса и гиперболы равен отношению расстояния от фокуса до центра к большой полуоси. Это свойство иногда принимают за определение эксцентриситета. В прежние времена (например, в 1787 году[1]) на большую полуось не делили — эксцентриситетом эллипса называли расстояние от фокуса до центра[2].
  • Эксцентриситет эллипса может быть также выражен через отношение малой () и большой () полуосей:
.
  • Эксцентриситет гиперболы может быть выражен через отношение мнимой () и действительной () полуосей:
.
  • Эксцентриситет равносторонней гиперболы, являющейся графиком обратной пропорциональности и задаваемой уравнением , равен .
  • Для эллипса также может быть выражен через отношение радиусов пери- () и апоцентров ():
.


См. также

Примечания
  1. John Bonnycastle. An Introduction to Astronomy. — London, 1787. — С. 90.


Литература

Ссылки
Downgrade Counter