Меню

Главная
Случайная статья
Настройки
Список k-однородных мозаик
Материал из https://ru.wikipedia.org

Примеры k-однородных мозаик

1-однородная (правильная)

1-однородная (полуправильная)

2-однородная мозаика

3-однородная мозаика
k-Однородные мозаики — это замощение плоскости выпуклыми правильными многоугольниками, соединёнными ребро-к-ребру и имеющими k типов вершин. 1-Однородные мозаики включают 3 правильные мозаики и 8 полуправильных мозаик. 1-Однородные мозаики могут определены их вершинными конфигурациями. Более высокие k-однородные мозаики перечислены по их вершинным фигурам, но они, в общем случае, не определяются уникально таким образом.

Полные списки k-однородных мозаик известны вплоть до k=6. Существует 20 2-однородных мозаик, 61 3-однородная мозаика, 151 4-однородная мозаика, 332 5-однородные мозаики и 673 6-однородные мозаики. Данная статья приводит все решения вплоть до k=5.

Другие замощения правильными многоугольниками не ребро-к-ребру позволяют использование многоугольников других размеров и сдвиг места контакта.

Содержание

Классификация
3-однородная мозаика №57 (из списка 61 мозаики)

Раскраска по числу сторон - жёлтые треугольники, красные квадраты (по многоугольникам)

Раскраска по 4-изоэдральным позициям, 3 цвета треугольников (по орбитам)


Такие периодические замощения выпуклыми многоугольниками можно классифицировать по числу орбит вершин, рёбер и плиток. Если имеется k орбит вершин, мозаика считается

k-однородные мозаики с одинаковой вершинно фигурой можно далее идентифицировать по их симметрии группы орнамента.

Перечисление

1-однородные мозаики вклюяает 3 правильные мозаики и 8 полуправильных с 2 и более типами правильных граней. Имеется 20 2-однородных мозаик, 61 3-однородная мозаика, 151 4-однородная мозаика, 332 5-однородные мозаики и 673 6-однородные мозаики. Мозаики можно сгруппировать по числу m различных вершинных фигур, они называются также m-архимедовыми мозаиками[1].

Наконец, если число типов верши равно однородности (m = k ниже), то говорят, что это мозаика Кротенхирдта. В общем случае однородность больше либо равна числу типов вершин (m k), поскольку различные типы вершин обязательно имеют различные орбиты, что в обратную сторону не выполняется. Если положить m = n = k, имеется 11 таких мозаик для n = 1; 20 для n = 2; 39 для n = 3; 33 для n = 4; 15 для n = 5; 10 для n = 6 и 7 таких мозаик для n = 7.
число k-однородных, m-архимедовых мозаик[2]
m-архимедовы
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Всего
k-однородные 1 11 0 11
2 0 20 0 20
3 0 22 39 0 61
4 0 33 85 33 0 151
5 0 74 149 94 15 0 332
6 0 100 284 187 92 10 0 673
7 0 ? ? ? ? ? 7 0 ?
8 0 ? ? ? ? ? 20 0 0 ?
9 0 ? ? ? ? ? ? 8 0 0 ?
10 0 ? ? ? ? ? ? 27 0 0 0 ?
11 0 ? ? ? ? ? ? ? 1 0 0 0 ?
12 0 ? ? ? ? ? ? ? ? 0 0 0 0 ?
13 0 ? ? ? ? ? ? ? ? ? ? ? 0 0 ?
14 0 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 ?
15 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ?
Всего 11 0


1-однородные мозаики (правильные)

Говорят, что мозаика правильная, если группа симметрии мозаики действует транзитивно на флаги мозаики, где флаг — это тройка, состоящая из взаимно инцидентных вершины, ребра и грани. Это означает, что для каждой пары флагов существует операция симметрии, переводящая первый флаг во второй. Это эквивалентно тому, что мозаика состоит из соединённых ребро-к-ребру конгруэнтных правильных многоугольников. Должно быть шесть правильных треугольников, четыре квадрата или три правильных шестиугольника в вершине, в результате получаем три правильных мозаики.
Правильные мозаики (3)
p6m, *632 p4m, *442

36
(t=1, e=1)

63
(t=1, e=1)

44
(t=1, e=1)


m-Архимедовы и k-однородные мозаики

Вершинная транзитивность означает, что для любой пары вершин имеется операция симметрии[англ.], переводящая первую вершину во вторую[3].

Если требование транзитивности флагов ослаблено до требования транзитивности вершин при сохранении соединения многоугольников ребро-к-ребру, имеется восемь дополнительных мозаик, известных как архимедовыили однородные. Заметим, что имеется два зеркальных отражения (энантиоморфный или хиральный), образующих 34.6 (плосконосую шестиугольную) мозаику, только одна из которых показана в следующей таблице. Все другие правильные и полуправильные мозаики ахиральны.

Грюнбаум и Шепард примененяют термин архимедова для этих мозаик как ссылку на локальность свойства расположения плиток вокруг вершины, а термин однородная как ссылку на глобальность свойства транзитивности вершин. Хотя на плоскости это приводит к одному и тому же множеству мозаик, в других пространствах есть архимедовы мозаики, не являющиеся однородными.

1-однородные мозаики (полуправильные)
однородные мозаики (8)
p6m, *632



[ 3.122?!]
(t=2, e=2)



[ 3.4.6.4]
(t=3, e=2)



[ 4.6.12]
(t=3, e=3)



[ (3.6)2]
(t=2, e=1)



[ 4.82]
(t=2, e=2)



[ 32.4.3.4]
(t=2, e=2)



[ 33.42]
(t=2, e=3)



[ 34.6]
(t=3, e=3)


2-однородные мозаики

Имеется двадцать (20) 2-однородных мозаик на евклидовой плоскости (называемых также 2-вершинно транзитивными мозаиками)[4][5][6] Типы вершин указаны для каждой мозаики. Если две мозаики имеет два одинаковых типа вершин, добавляются индексы 1,2.
2-однородные мозаики (20)
p6m, *632 p4m, *442

[36; 32.4.3.4
(t=3, e=3)

[3.4.6.4; 32.4.3.4]
(t=4, e=4)

[3.4.6.4; 33.42]
(t=4, e=4)

[3.4.6.4; 3.42.6]
(t=5, e=5)

[4.6.12; 3.4.6.4][англ.]
(t=4, e=4)

[36; 32.4.12]
(t=4, e=4)

[3.12.12; 3.4.3.12][англ.]
(t=3, e=3)
p6m, *632 p6, 632 p6, 632 cmm, 2*22 pmm, *2222 cmm, 2*22 pmm, *2222

[36; 32.62]
(t=2, e=3)

[36; 34.6]1
(t=3, e=3)

[36; 34.6]2
(t=5, e=7)

[32.62; 34.6]
(t=2, e=4)

[3.6.3.6; 32.62]
(t=2, e=3)

[3.42.6; 3.6.3.6]2
(t=3, e=4)

[3.42.6; 3.6.3.6]1
(t=4, e=4)
p4g, 4*2 pgg, 22 cmm, 2*22 cmm, 2*22 pmm, *2222 cmm, 2*22

[33.42; 32.4.3.4]1[англ.]
(t=4, e=5)

[33.42; 32.4.3.4]2[англ.]
(t=3, e=6)

[44; 33.42]1
(t=2, e=4)

[44; 33.42]2
(t=3, e=5)

[36; 33.42]1
(t=3, e=4)

[36; 33.42]2
(t=4, e=5)


3-однородные мозаики

Имеется 61 3-однородная мозаика на евклидовой плоскости. 39 мозаик являются 3-архимедовы с 3 различными типами вершин, в то время как 22 имеют 2 идентичных типа вершин с различными орбитами симметрии[7].
3-однородные мозаики c 3 типами вершин (39)

[3.426; 3.6.3.6; 4.6.12]
(t=6, e=7)

[36; 324.12; 4.6.12]
(t=5, e=6)

[324.12; 3.4.6.4; 3.122]
(t=5, e=6)

[3.4.3.12; 3.4.6.4; 3.122]
(t=5, e=6)

[3342; 324.12; 3.4.6.4]
(t=6, e=8)

[36; 3342; 324.12]
(t=6, e=7)

[36; 324.3.4; 324.12]
(t=5, e=6)

[346; 3342; 324.3.4]
(t=5, e=6)

[36; 324.3.4; 3.426]
(t=5, e=6)

[36; 324.3.4; 3.4.6.4]
(t=5, e=6)

[36; 3342; 3.4.6.4]
(t=6, e=6)

[36; 324.3.4; 3.4.6.4]
(t=6, e=6)

[36; 3342; 324.3.4]
(t=4, e=5)

[324.12; 3.4.3.12; 3.122]
(t=4, e=7)

[3.4.6.4; 3.426; 44]
(t=3, e=4)

[324.3.4; 3.4.6.4; 3.426]
(t=4, e=6)

[3342; 324.3.4; 44]
(t=4, e=6)

[3.426; 3.6.3.6; 44]
(t=5, e=7)

[3.426; 3.6.3.6; 44]
(t=6, e=7)

[3.426; 3.6.3.6; 44]
(t=4, e=5)

[3.426; 3.6.3.6; 44]
(t=4, e=6)

[3342; 3262; 3.426]
(t=5, e=8)

[3262; 3.426; 3.6.3.6]
(t=4, e=7)

[3262; 3.426; 3.6.3.6]
(t=5, e=7)

[346; 3342; 3.426]
(t=5, e=7)

[3262; 3.6.3.6; 63]
(t=4, e=5)

[3262; 3.6.3.6; 63]
(t=2, e=4)

[346; 3262; 63]
(t=2, e=5)

[36; 3262; 63]
(t=2, e=3)

[36; 346; 3262]
(t=5, e=8)

[36; 346; 3262]
(t=3, e=5)

[36; 346; 3262]
(t=3, e=6)

[36; 346; 3.6.3.6]
(t=5, e=6)

[36; 346; 3.6.3.6]
(t=4, e=4)

[36; 346; 3.6.3.6]
(t=3, e=3)

[36; 3342; 44]
(t=4, e=6)

[36; 3342; 44]
(t=5, e=7)

[36; 3342; 44]
(t=3, e=5)

[36; 3342; 44]
(t=4, e=6)
3-однородные мозаики (2:1) (22)

[(3.4.6.4)2; 3.426]
(t=6, e=6)

[(36)2; 346]
(t=3, e=4)

[(36)2; 346]
(t=5, e=5)

[(36)2; 346]
(t=7, e=9)

[36; (346)2]
(t=4, e=6)

[36; (324.3.4)2]
(t=4, e=5)

[(3.426)2; 3.6.3.6]
(t=6, e=8)

[3.426; (3.6.3.6)2]
(t=4, e=6)

[3.426; (3.6.3.6)2]
(t=5, e=6)

[3262; (3.6.3.6)2]
(t=3, e=5)

[(346)2; 3.6.3.6]
(t=4, e=7)

[(346)2; 3.6.3.6]
(t=4, e=7)

[3342; (44)2]
(t=4, e=7)

[(3342)2; 44]
(t=5, e=7)

[3342; (44)2]
(t=3, e=6)

[(3342)2; 44]
(t=4, e=6)

[(3342)2; 324.3.4]
(t=5, e=8)

[3342; (324.3.4)2]
(t=6, e=9)

[36; (3342)2]
(t=5, e=7)

[36; (3342)2]
(t=4, e=6)

[(36)2; 3342]
(t=6, e=7)

[(36)2; 3342]
(t=5, e=6)


4-однородные мозаики

Имеется 151 4-однородные мозаики на евклидовой плоскости. Поиск, проведённый Брайаном Галебахом, воспроизвёл список Кротенхирдта из 33 4-однородных мозаик с 4 различными типами вершин, как и списки 85 мозаик с 3 типами вершин и 33 с 2 типами вершин.

Имеется 33 мозаики с 4 типами вершин.
4-однородные мозаики с 4 типами вершин (33)

[33434; 3262; 3446; 63]

[3342; 3262; 3446; 46.12]

[33434; 3262; 3446; 46.12]

[36; 3342; 33434; 334.12]

[36; 33434; 334.12; 3.122]

[36; 33434; 343.12; 3.122]

[36; 3342; 33434; 3464]

[36; 3342; 33434; 3464]

[36; 33434; 3464; 3446]

[346; 3262; 3636; 63]

[346; 3262; 3636; 63]

[334.12; 343.12; 3464; 46.12]

[3342; 334.12; 343.12; 3.122]

[3342; 334.12; 343.12; 44]

[3342; 334.12; 343.12; 3.122]

[36; 3342; 33434; 44]

[33434; 3262; 3464; 3446]

[36; 3342; 3446; 3636]

[36; 346; 3446; 3636]

[36; 346; 3446; 3636]

[36; 346; 3342; 3446]

[36; 346; 3342; 3446]

[36; 346; 3262; 63]

[36; 346; 3262; 63]

[36; 346; 3262; 63]

[36; 346; 3262; 63]

[36; 346; 3262; 3636]

[3342; 3262; 3446; 63]

[3342; 3262; 3446; 63]

[3262; 3446; 3636; 44]

[3262; 3446; 3636; 44]

[3262; 3446; 3636; 44]

[3262; 3446; 3636; 44]


Имеется 85 мозаик с 3 типами вершин.
4-однородные мозаики (2:1:1)

[3464; (3446)2; 46.12]

[3464; 3446; (46.12)2]

[334.12; 3464; (3.122)2]

[343.12; 3464; (3.122)2]

[33434; 343.12; (3464)2]

[(36)2; 3342; 334.12]

[(3464)2; 3446; 3636]

[3464; 3446; (3636)2]

[3464; (3446)2; 3636]

[(36)2; 3342; 33434]

[(36)2; 3342; 33434]

[36; 3262; (63)2]

[36; 3262; (63)2]

[36; (3262)2; 63]

[36; (3262)2; 63]

[36; 3262; (63)2]

[36; 3262; (63)2]

[36; (346)2; 3262]

[36; (3262)2; 3636]

[(346)2; 3262; 63]

[(346)2; 3262; 63]

[346; 3262; (3636)2]

[346; 3262; (3636)2]

[3342; 33434; (3464)2]

[36; 33434; (3464)2]

[36; (33434)2; 3464]

[36; (3342)2; 3464]

[(3464)2; 3446; 3636]

[346; (33434)2; 3446]

[36; 3342; (33434)2]

[36; 3342; (33434)2]

[(3342)2; 33434; 44]

[(3342)2; 33434; 44]

[3464; (3446)2; 44]

[33434; (334.12)2; 343.12]

[36; (3262)2; 63]

[36; (3262)2; 63]

[36; 346; (3262)2]

[(36)2; 346; 3262]

[(36)2; 346; 3262]

[(36)2; 346; 3636]

[346; (3262)2; 3636]

[346; (3262)2; 3636]

[(346)2; 3262; 3636]

[(346)2; 3262; 3636]

[36; 346; (3636)2]

[3262; (3636)2; 63]

[3262; (3636)2; 63]

[(3262)2; 3636; 63]

[3262; 3636; (63)2]

[346; 3262; (63)2]

[346; (3262)2; 3636]

[3262; 3446; (3636)2]

[3262; 3446; (3636)2]

[346; (3342)2; 3636]

[346; (3342)2; 3636]

[346; 3342; (3446)2]

[3446; 3636; (44)2]

[3446; 3636; (44)2]

[3446; 3636; (44)2]

[3446; 3636; (44)2]

[(3446)2; 3636; 44]

[(3446)2; 3636; 44]

[(3446)2; 3636; 44]

[(3446)2; 3636; 44]

[(3446)2; 3636; 44]

[(3446)2; 3636; 44]

[(3446)2; 3636; 44]

[(3446)2; 3636; 44]

[3446; (3636)2; 44]

[3446; (3636)2; 44]

[3446; (3636)2; 44]

[3446; (3636)2; 44]

[36; 3342; (44)2]

[36; 3342; (44)2]

[36; (3342)2; 44]

[36; 3342; (44)2]

[36; 3342; (44)2]

[36; (3342)2; 44]

[36; (3342)2; 44]

[36; (3342)2; 44]

[(36)2; 3342; 44]

[(36)2; 3342; 44]

[(36)2; 3342; 44]

[(36)2; 3342; 44]


Имеется 33 мозаики с 2 типами вершин, 12 с двумя парами типов и 21 с отношением типов 3:1.
4-однородные мозаики (2:2)

[(3464)2; (46.12)2]

[(33434)2; (3464)2]

[(33434)2; (3464)2]

[(346)2; (3636)2]

[(36)2; (346)2]

[(3342)2; (33434)2]

[(3342)2; (44)2]

[(3342)2; (44)2]

[(3342)2; (44)2]

[(36)2; (3342)2]

[(36)2; (3342)2]

[(36)2; (3342)2]
4-однородные мозаики (3:1)

[343.12; (3.122)3]

[(346)3; 3636]

[36; (346)3]

[(36)3; 346]

[(36)3; 346]

[(3342)3; 33434]

[3342; (33434)3]

[3446; (3636)3]

[3446; (3636)3]

[3262; (3636)3]

[3262; (3636)3]

[3342; (44)3]

[3342; (44)3]

[(3342)3; 44]

[(3342)3; 44]

[(3342)3; 44]

[36; (3342)3]

[36; (3342)3]

[36; (3342)3]

[(36)3; 3342]

[(36)3; 3342]


5-однородные мозаики

Имеется 332 5-однородные мозаики на евклидовой плоскости. Поиск, проведённый Брайаном Галебахом, воспроизвёл список Кротенхирдта из 332 5-однородных мозаик с типами вершин от 2 до 5. Имеется 74 мозаики с 2 типами вершин, 149 мозаик с 3 типами вершин, 94 мозаик с 4 типами вершин и 15 с 5 типами.

Имеется 15 5-однородных мозаик с 5 типами вершинных фигур.
5-однородные мозаики, 5 types

[33434; 3262; 3464; 3446; 63]

[36; 346; 3262; 3636; 63]

[36; 346; 3342; 3446; 46.12]

[346; 3342; 33434; 3446; 44]

[36; 33434; 3464; 3446; 3636]

[36; 346; 3464; 3446; 3636]

[33434; 334.12; 3464;
3.12.12; 46.12]

[36; 346; 3446; 3636; 44]

[36; 346; 3446; 3636; 44]

[36; 346; 3446; 3636; 44]

[36; 346; 3446; 3636; 44]

[36; 3342; 3446; 3636; 44]

[36; 346; 3342; 3446; 44]

[36; 3342; 3262; 3446; 3636]

[36; 346; 3342; 3262; 3446]


Имеется 94 5-однородные мозаики с 4 типами вершин.
5-однородные мозаики (2:1:1:1)

[36; 33434; (3446)2; 46.12]

[36; 33434; 3446; (46.12)2]

[36; 33434; 3464; (46.12)2]

[36; 3342; (334.12)2; 3464]

[36; (3342)2; 334.12; 3464]

[36; 33434; (334.12)2; 3464]

[36; 33434; 334.12; (3.12.12)2]

[36; 346; (3342)2; 334.12]

[36; 33434; 343.12; (3.12.12)2]

[(3342)2; 334.12; 343.12; 3.12.12]

[(3342)2; 334.12; 343.12; 3.12.12]

[(3342)2; 334.12; 343.12; 44]

[33434; 3262; (3446)2; 44]

[36; (3342)2; 33434; 44]

[346; (3342)2; 33434; 44]

[36; 3342; (3464)2; 3446]

[3342; 3262; 3464; (3446)2]

[33434; 3262; 3464; (3446)2]

[36; 33434; (3446)2; 3636]

[3342; 33434; 3464; (3446)2]

[36; 33434; (3262)2; 3446]

[3342; 3262; (3464)2; 3446]

[33434; 3262; (3464)2; 3446]

[346; 3342; (3464)2; 3446]

[36; (3342)2; 33434; 3464]

[36; (3342)2; 33434; 3464]

[36; 3342; (33434)2; 3464]

[(36)2; 3342; 33434; 3464]

[36; 3342; (33434)2; 3464]

[(36)2; 3342; 33434; 334.12]

[36; 33434; (334.12)2; 343.12]

[(36)2; 346; 3342; 33434]

[(36)2; 346; 3262; 63]

[36; (346)2; 3262; 63]

[(36)2; 346; 3262; 3636]

[36; 346; (3262)2; 3636]

[36; (346)2; 3262; 3636]

[(36)2; 346; 3262; 3636]

[36; 346; 3262; (3636)2]

[36; (346)2; 3262; 3636]

[36; (346)2; 3262; 3636]

[36; (346)2; 3262; 3636]

[36; 346; (3262)2; 3636]

[36; 346; (3262)2; 3636]

[36; 346; 3262; (63)2]

[36; 346; (3262)2; 63]

[346; (3262)2; 3636; 63]

[(346)2; 3262; 3636; 63]

[(36)2; 346; 3262; 63]

[(36)2; 346; 3262; 63]

[36; 346; 3262; (63)2]

[36; 346; 3262; (63)2]

[36; 346; 3262; (63)2]

[36; 346; (3262)2; 63]

[346; (3262)2; 3636; 63]

[346; (3262)2; 3636; 63]

[346; (3262)2; 3636; 63]

[346; 3262; 3636; (63)2]

[346; (3262)2; 3636; 63]

[3342; 3262; 3446; (63)2]

[3342; 3262; 3446; (63)2]

[3262; 3446; 3636; (44)2]

[3262; 3446; 3636; (44)2]

[3262; 3446; (3636)2; 44]

[3262; 3446; (3636)2; 44]

[3342; 3262; 3446; (44)2]

[346; 3342; 3446; (44)2]

[3262; 3446; 3636; (44)2]

[3262; 3446; 3636; (44)2]

[3262; 3446; (3636)2; 44]

[3262; 3446; (3636)2; 44]

[3342; 3262; 3446; (44)2]

[346; 3342; 3446; (44)2]

[346; (3342)2; 3636; 44]

[36; 3342; (3446)2; 3636]

[346; (3342)2; 3446; 3636]

[346; (3342)2; 3446; 3636]

[(36)2; 346; 3446; 3636]

[36; 3342; (3446)2; 3636]

[346; (3342)2; 3446; 3636]

[346; (3342)2; 3446; 3636]

[(36)2; 346; 3446; 3636]

[(36)2; 3342; 3446; 3636]

[36; 3342; 3446; (3636)2]

[346; 3342; (3446)2; 3636]

[36; 346; (3342)2; 3446]

[346; (3342)2; 3262; 3636]

[346; (3342)2; 3262; 3636]

[36; (346)2; 3342; 3446]

[36; (346)2; 3342; 3446]

[36; (346)2; 3342; 3446]

[36; 346; (3342)2; 3262]

[(36)2; 346; 3342; 3636]

[(36)2; 346; 3342; 3636]


Имеется 149 5-однородных мозаик, 60 имеют копии 3:1:1, 89 имеют копии 2:2:1.
5-однородные мозаикиs (3:1:1)

[36; 334.12; (46.12)3]

[3464; 3446; (46.12)3]

[36; (334.12)3; 46.12]

[334.12; 343.12; (3.12.12)3]

[36; (33434)3; 343.12]

[3262; 3636; (63)3]

[346; 3262; (63)3]

[36; (3262)3; 63]

[36; (3262)3; 63]

[3262; (3636)3; 63]

[3446; 3636; (44)3]

[3446; 3636; (44)3]

[36; 3342; (44)3]

[36; 3342; (44)3]

[3446; (3636)3; 44]

[3446; (3636)3; 44]

[36; (3342)3; 44]

[36; (3342)3; 44]

[36; (3342)3; 44]

[(36)3; 3342; 44]

[(36)3; 3342; 44]

[3446; 3636; (44)3]

[3446; 3636; (44)3]

[36; 3342; (44)3]

[36; 3342; (44)3]

[(3342)3; 3262; 3446]

[3262; 3446; (3636)3]

[3262; 3446; (3636)3]

[3262; 3446; (3636)3]

[3262; 3446; (3636)3]

[3446; (3636)3; 44]

[3446; (3636)3; 44]

[36; (3342)3; 44]

[36; (3342)3; 44]

[36; (3342)3; 44]

[(36)3; 3342; 44]

[(36)3; 3342; 44]

[36; (3342)3; 44]

[36; (3342)3; 44]

[36; (3342)3; 44]

[(3342)3; 3446; 3636]

[(3342)3; 3446; 3636]

[346; (3342)3; 3446]

[(36)3; 346; 3262]

[(36)3; 346; 3262]

[(36)3; 346; 3262]

[346; (3262)3; 3636]

[346; (3262)3; 3636]

[(346)3; 3262; 3636]

[(346)3; 3262; 3636]

[(36)3; 346; 3262]

[(36)3; 346; 3262]

[(346)3; 3262; 3636]

[36; 346; (3636)3]

[36; 346; (3636)3]

[36; 346; (3636)3]

[36; 346; (3636)3]

[(36)3; 346; 3636]

[(36)3; 346; 3636]

[36; (346)3; 3636]
5-однородные мозаики (2:2:1)

[(3446)2; (3636)2; 46.12]

[(36)2; (3342)2; 3464]

[(3342)2; 334.12; (3464)2]

[36; (33434)2; (3464)2]

[3342; (33434)2; (3464)2]

[3342; (33434)2; (3464)2]

[3342; (33434)2; (3464)2]

[(33434)2; 343.12; (3464)2]

[36; (3262)2; (63)2]

[(3262)2; (3636)2; 63]

[(36)2; (3342)2; 33434]

[(36)2; 3342; (33434)2]

[346; (3342)2; (33434)2]

[(36)2; 3342; (33434)2]

[(36)2; 3342; (33434)2]

[(3262)2; 3636; (63)2]

[(3446)2; 3636; (44)2]

[(3446)2; 3636; (44)2]

[3446; (3636)2; (44)2]

[(3446)2; 3636; (44)2]

[(3446)2; 3636; (44)2]

[3446; (3636)2; (44)2]

[36; (3342)2; (44)2]

[(36)2; 3342; (44)2]

[(36)2; 3342; (44)2]

[(3446)2; 3636; (44)2]

[(3446)2; 3636; (44)2]

[(3446)2; 3636; (44)2]

[(3446)2; 3636; (44)2]

[(3446)2; 3636; (44)2]

[36; (3342)2; (44)2]

[(36)2; (3342)2; 44]

[(3446)2; 3636; (44)2]

[(3446)2; 3636; (44)2]

[3446; (3636)2; (44)2]

[(3446)2; 3636; (44)2]

[(3446)2; 3636; (44)2]

[3446; (3636)2; (44)2]

[36; (3342)2; (44)2]

[(36)2; 3342; (44)2]

[(36)2; 3342; (44)2]

[36; (3342)2; (44)2]

[36; (3342)2; (44)2]

[(3446)2; 3636; (44)2]

[(36)2; (3342)2; 44]

[(36)2; (3342)2; 44]

[(36)2; (3342)2; 44]

[(36)2; (3342)2; 44]

[(33434)2; 3262; (3446)2]

[3342; (3262)2; (3446)2]

[3342; (3262)2; (3446)2]

[3262; (3446)2; (3636)2]

[(3262)2; 3446; (3636)2]

[(3262)2; 3446; (3636)2]

[(3464)2; (3446)2; 3636]

[3262; (3446)2; (3636)2]

[3262; (3446)2; (3636)2]

[(346)2; (3446)2; 3636]

[(346)2; (3446)2; 3636]

[(346)2; (3446)2; 3636]

[(346)2; (3446)2; 3636]

[(3342)2; (3446)2; 3636]

[(3342)2; (3446)2; 3636]

[(346)2; (3342)2; 3446]

[(346)2; 3342; (3446)2]

[(36)2; (346)2; 3262]

[36; (346)2; (3262)2]

[(36)2; 346; (3262)2]

[(346)2; (3262)2; 63]

[36; (3262)2; (63)2]

[36; (346)2; (3262)2]

[346; (3262)2; (3636)2]

[(346)2; (3262)2; 3636]

[36; (346)2; (3262)2]

[(346)2; 3262; (3636)2]

[(346)2; (3262)2; 3636]

[(36)2; (346)2; 3262]

[(36)2; (346)2; 3262]

[(36)2; (346)2; 3636]

[(36)2; (346)2; 3636]

[36; (346)2; (3342)2]

[(36)2; (346)2; 3262]

[36; (346)2; (3262)2]

[36; (346)2; (3262)2]

[346; (3342)2; (3636)2]

[346; (3342)2; (3636)2]

[(36)2; 346; (3636)2]

[(36)2; (346)2; 3636]

[(36)2; 3342; (33434)2]


Имеется 74 5-однородных типов с 2 типами вершин, 27 с 4:1 и 47 с 3:2 копиями каждого типа.
5-однородные мозаики (4:1)

[(3464)4; 46.12]

[343.12; (3.12.12)4]

[36; (33434)4]

[36; (33434)4]

[(36)4; 346]

[(36)4; 346]

[(36)4; 346]

[36; (346)4]

[3262; (3636)4]

[(346)4; 3262]

[(346)4; 3262]

[(346)4; 3636]

[3262; (3636)4]

[3446; (3636)4]

[3446; (3636)4]

[(3342)4; 33434]

[3342; (33434)4]

[3342; (44)4]

[3342; (44)4]

[(3342)4; 44]

[(3342)4; 44]

[(3342)4; 44]

[36; (3342)4]

[36; (3342)4]

[36; (3342)4]

[(36)4; 3342]

[(36)4; 3342]


Имеется 29 5-однородных мозаик с 3 и 2 типами вершинных фигур.
5-однородные мозаики (3:2)

[(3464)2; (46.12)3]

[(3464)2; (46.12)3]

[(3464)3; (3446)2]

[(33434)2; (3464)3]

[(33434)3; (3464)2]

[(36)2; (346)3]

[(36)2; (346)3]

[(36)3; (346)2]

[(36)3; (346)2]

[(36)3; (346)2]

[(36)3; (346)2]

[(36)2; (346)3]

[(36)2; (346)3]

[(36)2; (346)3]

[(3262)2; (3636)3]

[(346)3; (3636)2]

[(346)3; (3636)2]

[(346)2; (3636)3]

[(3446)3; (3636)2]

[(3446)2; (3636)3]

[(3446)3; (3636)2]

[(3446)2; (3636)3]

[(3446)2; (3636)3]

[(3342)3; (33434)2]

[(3342)3; (33434)2]

[(3342)2; (33434)3]

[(3342)2; (33434)3]

[(3342)2; (44)3]

[(3342)2; (44)3]

[(3342)2; (44)3]

[(3342)3; (44)2]

[(3342)2; (44)3]

[(3342)3; (44)2]

[(3342)2; (44)3]

[(3342)2; (44)3]

[(3342)3; (44)2]

[(3342)3; (44)2]

[(36)2; (3342)3]

[(36)2; (3342)3]

[(36)2; (3342)3]

[(36)2; (3342)3]

[(36)3; (3342)2]

[(36)3; (3342)2]

[(36)3; (3342)2]

[(36)3; (3342)2]

[(36)3; (3342)2]

[(36)3; (3342)2]


Более высокиеk-однородные мозаики

k-Однородные мозаики были перечислены вплоть до k=6. Имеется 673 6-однородные мозаики на евклидовой плоскости. Поиск, проведённый Брайаном Галебахом, воспроизвёл список Кротенхирдта из 10 6-однородных мозаик с 6 различными типами вершин, список из 92 с 5 типами вершин, 187 с 4 типами вершин, 284 с 3 типами вершин и 100 с 2 типами вершин.

Примечания
  1. k-uniform tilings by regular polygons Архивировано 30 июня 2015 года. Nils Lenngren, 2009
  2. n-Uniform Tilings. probabilitysports.com. Дата обращения: 21 июня 2019.
  3. Critchlow, 1970, с. 60-61.
  4. Critchlow, 1970, с. 62-67.
  5. Grnbaum, Shephard, 1987, с. 65-67.
  6. In Search of Demiregular Tilings. Дата обращения: 4 июня 2015. Архивировано из оригинала 7 мая 2016 года.
  7. Chavey, 1989.


Литература

Ссылки
Downgrade Counter