Меню
Главная
Случайная статья
Настройки
|
CKM-матрица, матрица Кабиббо — Кобаяси — Маскавы (ККМ-матрица, матрица смешивания кварков, иногда раньше называлась KM-матрица) в Стандартной модели физики элементарных частиц — унитарная матрица, которая содержит информацию о силе слабых взаимодействий, изменяющих аромат. Технически, она определяет преобразование между двумя базисами квантовых состояний: состояниями свободно движущихся кварков (то есть их массовыми состояниями) и состояниями кварков, участвующих в слабых взаимодействиях. Она важна также для понимания нарушения CP-симметрии. Точное математическое определение этой матрицы дано в статье по основам Стандартной модели. Эта матрица была предложена для трёх поколений кварков японскими физиками Макото Кобаяси и Тосихидэ Маскава, которые добавили одно поколение к матрице, ранее предложенной Николой Кабиббо.
Содержание
Матрица
Слева мы видим CKM-матрицу вместе с вектором сильных собственных состояний кварков, а справа имеем слабые собственные состояния кварков. ККМ-матрица описывает вероятность перехода от одного кварка q к другому кварку q' . Эта вероятность пропорциональна
Величины значений в матрице были установлены экспериментально и равны приблизительно[1]:
Таким образом, CKM-матрица довольно близка к единичной матрице.
Подсчёт
Чтобы идти дальше, необходимо подсчитать количество параметров в этой матрице V, которые проявляются в экспериментах и, следовательно, физически важны. Если есть N поколений кварков (2N ароматов), то
- комплексная матрица NN содержит 2N действительных чисел.
- Ограничивающее условие унитарности k VikV*jk = ij. Следовательно, для диагональных компонент (i = j) существует N ограничений, а для остающихся компонент — N(N 1). Количество независимых действительных чисел в унитарной матрице равно N.
- Одна фаза может быть поглощена каждым кварковым полем. Общая фаза ненаблюдаема. Следовательно, количество независимых чисел уменьшается на 2N 1, то есть общее количество свободных переменных равно (N 2N + 1) = (N 1).
- Из них N(N 1)/2 — углы вращения, называемые кварковыми углами смешивания.
- Оставшиеся (N 1)(N 2)/2 являются комплексными фазами, вызывающими нарушение CP-инвариантности.
Если число поколений кварков N = 2 (исторически такой была первая версия CKM-матрицы, когда были известны только два поколения), есть только один параметр — угол смешивания между двумя поколениями кварков. Он называется угол Кабиббо в честь Николы Кабиббо.
В Стандартной модели N = 3, следовательно, есть три угла смешивания и одна комплексная фаза, нарушающая CP-симметрию.
Наблюдения и предсказания
Идея Кабиббо появилась из-за необходимости объяснения двух наблюдаемых явлений:
- переходы u d и e e, имели похожие амплитуды.
- переходы с изменением странности S = 1 имели амплитуды, равные 1/4 от амплитуд переходов без изменения странности (S = 0).
Решение Кабиббо состояло в постулировании универсальности слабых переходов, чтобы решить проблему 1, и угла смешивания c (теперь называемого углом Кабиббо) между d- и s-кварками, чтобы решить проблему 2.
Для двух поколений кварков нет нарушающей CP-симметрию фазы, как было показано выше. Поскольку нарушение CP-симметрии наблюдалось в распадах нейтральных каонов уже в 1964 году, появление немногим позже Стандартной модели было ясным сигналом о третьем поколении кварков, как было указано в 1973 году Кобаяси и Маскавой. Открытие b-кварка в Фермилабе (группой Леона Ледермана) в 1977 году немедленно привело к началу поисков ещё одного кварка третьего поколения — t-кварка.
Универсальность слабых переходов
Ограничение по унитарности CKM-матрицы для диагональных компонент может быть записано как
для всех поколений i. Это предполагает, что сумма всех связей кварка u-типа со всеми кварками d-типа одинакова для всех поколений. Никола Кабиббо в 1967 году назвал это соотношение слабой универсальностью. Теоретически, это следствие того факта, что все дублеты SU(2) взаимодействуют с векторными бозонами слабых взаимодействий с одинаковой константой связи. Это подтверждено во многих экспериментах.
Треугольники унитарности
Оставшиеся ограничения по унитарности ККМ-матрицы могут быть записаны в форме
Для любых фиксированных и различных i и j это ограничение накладывается на три комплексных числа, одно для каждого k, что означает, что эти числа являются вершинами треугольника на комплексной плоскости. Существует шесть вариантов i и j, поэтому и шесть таких треугольников, каждый из которых называется треугольником унитарности. Их формы могут быть очень разными, но они все имеют одинаковую площадь, которую можно отнести к нарушающей CP-симметрию фазе. Площадь исчезает для специфических параметров в Стандартной модели, для которых нет нарушения CP-симметрии. Ориентация треугольников зависит от фаз кварковых полей.
Поскольку как три стороны, как и три угла каждого треугольника могут быть измерены в прямых экспериментах, проводится серия тестов для проверки замкнутости треугольников. Это задача для таких экспериментов, как японский BELLE, калифорнийский BaBar и эксперимент LHCb проекта LHC.
Параметризации
Для полного задания CKM-матрицы требуется четыре независимых параметра.
Было предложено множество параметризаций, но наиболее популярны три.
KM-параметры
Изначально параметризация Кобаяси и Маскавы использовала три угла (1, 2, 3) и фазу CP-нарушения ().
где 1 — угол Кабиббо, ci и si — соответственно косинус и синус угла i.
«Стандартные» параметры
«Стандартная» параметризация CKM-матрицы использует три угла Эйлера (12, 23, 13) и фазу CP-нарушения ()[2]. Смешивание между поколениями кварков i и j исчезает, если угол смешивания ij стремится к нулю.
Здесь 12 — угол Кабиббо, cij и sij — соответственно косинус и синус угла ij.
На текущий момент наиболее точные значения стандартных параметров[3][4]:
- 12 = 13,04 ± 0,05°,
- 13 = 0,201 ± 0,011°,
- 23 = 2,38 ± 0,06°,
- 13 = 1,20 ± 0,08 радиана.
Параметры Вольфенштейна
Третья параметризация CKM-матрицы, введёна Линкольном Вольфенштейном, использует параметры , A, и [5]. Параметры Вольфенштейна являются числами порядка единицы и связаны со «стандартной» параметризацией следующими соотношениями:
- = s12,
- A2 = s23,
- A3( i) = s13ei.
Параметризация Вольфенштейна CKM-матрицы является аппроксимацией «стандартной» параметризации. Если ограничиться членами разложения до порядка 3, она может быть представлена следующим образом:
CP-нарушение может быть определено измерением i.
Используя значения из предыдущего подраздела, можно получить следующие значения параметров Вольфенштейна[4]:
- = 0,2257+0,0009
0,0010,
- A = 0,814+0,021
0,022,
- = 0,135+0,031
0,016,
- = 0,349+0,015
0,017.
См. также
Примечания
- Beringer J. (Particle Data Group) et al. Review of Particles Physics: The CKM Quark-Mixing Matrix (англ.) // Physical Review D : journal. — 2012. — Vol. 80, no. 1. — P. 1—1526 [162]. — doi:10.1103/PhysRevD.86.010001. — . Архивировано 14 июля 2018 года.
-
L.L. Chau and W.-Y. Keung. Comments on the Parametrization of the Kobayashi-Maskawa Matrix (англ.) // Physical Review Letters : journal. — 1984. — Vol. 53, no. 19. — P. 1802. — doi:10.1103/PhysRevLett.53.1802. — .
- Значения получены из значений параметров Вольфенштейна из издания Review of Particle Physics 2008 года.
- 1 2 Amsler C. (Particle Data Group) et al. Review of Particles Physics: The CKM Quark-Mixing Matrix (англ.) // Physics Letters B : journal. — 2008. — Vol. 667. — P. 1—1340. — doi:10.1016/j.physletb.2008.07.018. — . Архивировано 21 декабря 2018 года.
-
L. Wolfenstein. Parametrization of the Kobayashi-Maskawa Matrix (англ.) // Physical Review Letters : journal. — 1983. — Vol. 51, no. 21. — P. 1945. — doi:10.1103/PhysRevLett.51.1945. — .
Ссылки- Томилин К. А. Фундаментальные физические постоянные в историческом и методологическом аспектах. М.: Физматлит, 2006, 368 с, страница 153. (djvu)
- Griffiths, David J. Introduction to Elementary Particles (неопр.). — Wiley, John & Sons, Inc, 1987.
- Povh, Bogdan et al., (1995). Particles and Nuclei: An Introduction to the Physical Concepts. New York: Springer. ISBN 3-540-20168-8
- CP violation, by I.I. Bigi and A.I. Sanda (Cambridge University Press, 2000) [ISBN 0-521-44349-0]
- Particle Data Group on CP violation
- The Babar experiment at SLAC and the BELLE experiment at KEK Japan
- N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.
- M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49 (1973) 652. (недоступная ссылка)
- Новосибирские физики опровергнут треугольность идеального треугольника KEK
|
|