Меню
Главная
Случайная статья
Настройки
|
Жёсткий диск, также накопитель на жёстких магнитных дисках (НЖМД, англ. hard (magnetic) disk drive, HDD, HMDD; жарг. винчестер) — запоминающее устройство (устройство хранения информации, накопитель) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров[1], хотя в современных ноутбуках и неттопах, например, часто используются только SSD форм-фактора M.2 - NVMe и/или SATA M.2.
В отличие от гибкого диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины[англ.], покрытые слоем ферромагнитного материала, чаще всего диоксида хрома, магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм[2]), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.
Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации, хотя существовали и жёсткие диски со сменными пакетами пластин, заключёнными в картриджи - таковыми были, например, системы Jaz и Rev от Iomega, не нашедшие популярности из-за дороговизны и низкой надёжности, при этом быстроходный синхронный двигатель, похожий на двигатель в обычном жёстком диске, блок головок с приводом и электроника являлись частью дисковода, а картриджи предполагалось использовать аналогично обычным дискетам.
Со второй половины 2000-х годов получили распространение более производительные твердотельные накопители, вытесняющие дисковые накопители из ряда применений несмотря на более высокую стоимость единицы хранения; жёсткие диски при этом, по состоянию на середину 2010-х годов, получили широкое распространение как недорогие и высокоёмкие устройства хранения как в потребительском сегменте, так и корпоративном.
Жёсткие диски оставались популярны в течение первого десятилетия XXI века, поскольку достойной замены им на тот момент не существовало: твердотельные накопители (SSD) тогда только развивались и потому стоили дорого, вмещая при этом совсем небольшие объёмы данных. В начале 2021 года продажи SSD в штучном выражении превышали HDD в соотношении 3:2 (99 млн против 64 млн.), тем не менее, по рынку объёма хранимой памяти, HDD сохраняют лидерство в соотношении 4,5:1 (288,3 ЭБ против 61,5 ЭБ у SSD)[1]. В начале 2022-х продолжающийся рост популярности SSD как более надёжных и быстрых накопителей привёл к тому, что поставки жёстких дисков в общемировом объёме упали на 15 % (по отношению к 2021 году)[3][4].
Содержание
История- 1956 год — первый жёсткий диск IBM 350[англ.] в составе первого серийного компьютера IBM 305 RAMAC[англ.], его разработала команда специалистов под руководством Рейнолда Джонсона[5]. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 млн 6-битных слов (3,5 МБ в пересчёте на 8-битные слова — байты). Новый компьютер представили 14 сентября[6][7] (по другим данным, 13)[8][9].
- 1961 год — в жёстком диске IBM 1301[англ.] головки чтения/записи впервые были установлены для каждого диска; 28 МБ[10].
- 1973 год — в жёстком диске IBM 3340[англ.], названном Winchester, впервые были применены лёгкие головки чтения/записи, парящие над вращающимся диском под действием аэродинамических сил, что позволило значительно уменьшить воздушный зазор между диском и головкой. Также впервые пластины и головки были упакованы в гермокамеры, что исключило внешние воздействия на механизм; 30 МБ[11].
- 1979 год — в жёстком диске IBM 3370[англ.] впервые магнитные головки были изготовлены по тонкоплёночной технологии, разрабатываемой с конца 1960-х годов. Благодаря этому плотность записи увеличилась до 7,53 Мбит на дюйм. Тонкоплёночные головки чтения/записи производились до 1991 года, после чего их заменили магниторезистивные головки[12].
- 1980 год — первый 5,25-дюймовый Winchester, Shugart ST-506; 5 МБ (промышленные накопители IBM достигали ёмкости в 1 ГБ[12]). Жёсткие диски типоразмера 5,25" производились до 1998 года[13].
- 1981 год — 5,25-дюймовый Shugart ST-412; 10 МБ[12].
- 1983 год — первый 3,5-дюймовый жёсткий диск, выпущенный небольшой шотландской компанией Rodime[англ.]; 10 МБ. Данный форм-фактор был запатентован Rodime как собственное изобретение[13].
- 1985 год — стандарт ESDI, доработанный стандарт ST-412.
- 1986 год — стандарты SCSI, ATA (IDE).
- 1990 год — максимальная ёмкость 320 МБ.
- 1991 год — IBM выпускает первый 2,5-дюймовый жёсткий диск Tamba-1 ёмкостью 63 МБ и весом чуть более 200 грамм[13].
- 1992 год — первый жёсткий диск со скоростью вращения шпинделя 7200 об./мин.; 2,1 ГБ[13].
- 1995 год — максимальная ёмкость 2 ГБ.
- 1996 год — первый жёсткий диск со скоростью вращения шпинделя 10 000 об./мин., Seagate Cheetah[14].
- 1996 год — максимальная ёмкость Seagate Elite 23 ГБ[15].
- 1998 год — стандарты UDMA/33[англ.] и ATAPI.
- 1999 год — IBM выпускает Microdrive ёмкостью 170 и 340 МБ.
- 2000 год — IBM выпускает Microdrive ёмкостью 500 МБ и 1 ГБ. В этом же году появились первые жёсткие диски со скоростью вращения шпинделя 15 000 оборотов в минуту, выпущенные Seagate и IBM. На этом гонка скоростей вращения прекратилась[16].
- 2001 год — Компанией Maxtor выпущен «DiamondMax D536X» — первый стандартный 3,5-дюймовый жёсткий диск с ёмкостью 100 ГБ[17].
- 2002 год — стандарт ATA/ATAPI-6 и накопители ёмкостью 137 ГБ.
- 2003 год — стандарт SATA.
- 2003 год — Hitachi выпускает Microdrive ёмкостью 2 ГБ.
- 2004 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 2,5 и 5 ГБ.
- 2005 год — Компанией Hitachi (HGST) выпущен «Hitachi Deskstar 7K500» — первый 3,5-дюймовый стандартный жёсткий диск с ёмкостью 500 ГБ.
- 2005 год — стандарты SATA II (Serial ATA 3G) и SAS (Serial Attached SCSI).
- 2005 год — Seagate выпускает ST1[англ.] — аналог Microdrive ёмкостью 8 ГБ.
- 2006 год — применение перпендикулярного метода записи в коммерческих накопителях.
- 2006 год — появление первых «гибридных» жёстких дисков, содержащих блок флеш-памяти.
- 2006 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 12 ГБ.
- 2007 год — Hitachi представляет первый коммерческий 3,5-дюймовый накопитель «Hitachi Deskstar 7K1000» ёмкостью 1 ТБ.
- 2009 год — на основе 500-гигабайтных пластин Western Digital, затем Seagate выпустили модели ёмкостью 2 ТБ[18].
- 2009 год — Samsung выпустила первые жёсткие диски с интерфейсом USB 2.0[19].
- 2009 год — Western Digital объявила о создании 2,5-дюймовых HDD объёмом 1 ТБ (плотность записи — 333 ГБ на одной пластине)[20].
- 2009 год — появление стандарта SATA III (SATA 6G).
- 2010 год — Seagate выпускает жёсткий диск объёмом 3 ТБ.
- 2010 год — Samsung выпускает жёсткий диск с пластинами, у которых плотность записи — 667 ГБ на одной пластине[21].
- 2011 год — Western Digital выпустила первый диск на 750-гигабайтных пластинах[22].
- 2011 год — Hitachi и Seagate выпустили диски на 1-терабайтных пластинах[23][24].
- 2011 год — Seagate представила первый в мире 3,5-дюймовый диск объёмом 4 ТБ[25][26].
- 2013 год — Western Digital выпускает диск на 6 ТБ с 7 пластинами вместо 5[27].
- 2014 год — в конце 2014 г. Seagate выпускает первый в мире жёсткий диск емкостью 8 ТБ[28];
Western Digital выпускает модель «Ultrastar He10» — первый в мире диск ёмкостью 10 ТБ с гелием вместо воздуха внутри корпуса, он имеет 7 пластин[29].
- 2017 год — Toshiba выпустила диск MG07ACA, ёмкость которого составляет 14 ТБ[30].
- 2018 год — используя технологию HAMR, Seagate выпустила первый в мире жёсткий диск объёмом 16 ТБ[31][32].
- 2020 год — WDC и Seagate выпускают жёсткие диски объёмом 20 Тбайт[33].
- 2022 год — Western Digital выпускают жёсткие диски объёмом 22 Тбайт[34].
- 2023 год — Western Digital представила самый быстрый HDD в мире со скоростью чтения/записи 582 Мбайт/с. Используется два независимых блока головок[35][36].
- 2023 год — Seagate начала поставки жёстких дисков ёмкостью более 30 Тбайт с термомагнитной записью[37][38].
- 2025 год — Seagate начала поставки жёстких дисков ёмкостью более 36 Тбайт с пластинами с плотностью записи 6 ТБ[39].
Название «винчестер»
По одной из версий[40][41], название «винчестер» (англ. Winchester) накопитель получил благодаря работавшему в фирме IBM Кеннету Хотону (англ. Kenneth E. Haughton), руководителю проекта, в результате в 1973 году был выпущен жёсткий диск модели IBM 3340[англ.], впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 мегабайт каждый, что по созвучию совпало с обозначением популярного охотничьего оружия — винтовки Winchester Model 1894, использующего винтовочный патрон .30-30 Winchester. Также существует версия, что название произошло исключительно из-за названия патрона, также выпускавшегося Winchester Repeating Arms Company, первого созданного в США боеприпаса для гражданского оружия «малого» калибра на бездымном порохе, который превосходил патроны старых поколений по всем показателям и немедленно завоевал широчайшую популярность[42].
В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слова «винт»[43] (иногда — «винч»[44]).
Технологии записи данных
Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке за счёт электромагнитной индукции.[источник не указан 997 дней]
С конца 1990-х на рынке устройств хранения информации начали применяться головки на основе эффекта гигантского магнитного сопротивления (ГМС)[45][46]. С начала 2000-х головки на основе эффекта ГМС стали заменяться на головки на основе туннельного магниторезистивного эффекта (в них изменение магнитного поля приводит к изменению сопротивления в зависимости от изменения напряжённости магнитного поля; подобные головки позволяют увеличить вероятность достоверности считывания информации, особенно при больших плотностях записи информации). В 2007 году устройства на основе туннельного магниторезистивного эффекта с оксидом магния (эффект открыт в 2005 году) полностью заменили устройства на основе эффекта ГМС.
По оценкам экспертов конца 2020 года, в ближайшие годы производители жёстких дисков будут переходить на технологию записи с локальным разогревом магнитных пластин (HAMR), для которой, как считается, лучше подходят стеклянные пластины, а не алюминиевые, так как стекло без появления дефектов сможет выдержать локальный нагрев до 700 °C, тогда как термостойкость алюминия ограничена 200 °C[33].
Продольная магнитная запись
Метод продольной записи — технология LMR (англ. Longitudinal Magnetic Recording). В данном случае биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей — доменов. При этом вектор намагниченности домена расположен продольно, то есть параллельно поверхности диска. Каждая из этих областей является логическим нулём или единицей, в зависимости от направления намагниченности.
Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см. К 2010 году этот метод был практически вытеснен методом перпендикулярной записи.
Перпендикулярная магнитная запись
Метод перпендикулярной записи — технология PMR (англ. Perpendicular Magnetic Recording) или CMR (англ. Conventional Magnetic Recording - обычная магнитная запись), при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Предыдущий метод записи, параллельно поверхности магнитной пластины, привёл к тому, что в определённый момент инженеры упёрлись в «потолок» — дальше увеличивать плотность информации на дисках было невозможно. И тогда вспомнили о другом способе записи, который был известен ещё с 1970-х годов.
Плотность записи при этом методе резко возросла — более чем на 30 % ещё на первых образцах (на 2009 год — 400 Гбит/дюйм, или 62 Гбит/см[47]). Теоретический предел отодвинулся на порядки и составляет более 1 Тбит/дюйм.
Жёсткие диски с перпендикулярной записью стали доступны на рынке с 2006 года[48]. В 2023 году Seagate заявила, что после выпуска HDD на PMR объёмом 24 TB технология себя изживёт, а дальнейшее развитие останется за «черепичной» магнитной записью (SMR) и магнитной записью с подогревом (HAMR)[49][50].
Черепичная магнитная запись
Метод черепичной магнитной записи[англ.] (англ. Shingled Magnetic Recording, SMR) был реализован в начале 2010-х годов. В нём используется тот факт, что ширина области чтения меньше, чем ширина записывающей головки. Запись дорожек в этом методе производится с частичным наложением в рамках групп дорожек (пакетов). Каждая следующая дорожка пакета частично закрывает предыдущую (подобно черепичной кровле), оставляя от неё узкую часть, достаточную для считывающей головки.
По своей специфике она радикально отличается от более популярных технологий записи CMR и PMR[51][52][53].
Черепичная запись увеличивает плотность[англ.] записанной информации (технология применяется производителями жестких дисков для повышения плотности записи данных, что позволяет им умещать большее количество информации на каждой пластине винчестера), однако осложняет перезапись — при каждом изменении требуется полностью перезаписать весь пакет перекрывающихся дорожек.
Технология позволяет увеличить ёмкость жёстких дисков на 15—20 % в зависимости от конкретной реализации; при этом не лишена недостатков, главный из которых — низкая скорость записи/перезаписи, что критично при использовании в настольных компьютерах.
Официально технология черепичной магнитной записи применяется главным образом в НЖМД для центров обработки данных (ЦОД), используется для архивов и приложений типа WORM (write once, read many), где редко необходима перезапись.
Компании WD и Toshiba в конце 2010-х намеренно скрывали информацию об использовании в ряде своих накопителей, ориентированных на потребительский сегмент, технологии SMR; её использование приводит к несовместимости накопителей с некоторыми моделями файловых серверов и к невозможности их объединения в RAID-массивы[54], а также к падению скорости произвольной записи. Кроме того, ошибки в прошивке некоторых SMR-дисков WD приводили к потере данных при использовании файловой системы ZFS[55][56]. Что касается третьего крупнейшего производителя жёстких дисков, Seagate, она сообщала об использовании SMR в документации к некоторым дискам, но скрывала её в случае других[54][57].
Перспективные методы записи
Метод тепловой магнитной записи (англ. HAMR, Heat-Assisted Magnetic Recording) остаётся перспективным, продолжаются его доработки и внедрение. В этом методе используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На 2009 год были доступны только экспериментальные образцы, плотность записи которых составляла 150 Гбит/см[58]. Специалисты Hitachi называют предел для этой технологии в 2,3—3,1 Тбит/см, а представители Seagate Technology — 7,75 Тбит/см[59]. Seagate, используя данную технологию, выпустила в 2018 году жёсткий диск объёмом 16 ТБ[31], а в 2023 году приступила к коммерческим поставкам HDD объёмом 30 ТБ[37][38] и более[60][61].
В 2006 году под руководством Джимми Жу (англ. Jimmy Zhu) Университет Карнеги — Меллона начинает разработку технологии магнитной записи с вспомогательным микроволновым излучением (англ. MAMR, Microwave-Assisted Magnetic Recording)[62]. В 2008 году технологию предложили Hitachi, которая за 2 года так и не смогла добиться успехов и обратилась за помощью к специалистам исследовательского центра NEDO[англ.]. В 2010 году были достигнуты первые результаты практической реализации MAMR[63], доказавшие перспективы развития технологии. В 2012 году Hitachi продает технологию Western Digital, которая к 2015 году разрабатывает головку, поддерживающую технологию MAMR, в основе которой лежит генератор спинового момента[64].
В 2017 году, в ответ на технологию HAMR, Western Digital первой заявила о планах освоения микроволновой поддержкой записи[65], однако, по состоянию на 2019 год так и не смогла наладить серийное производство[66][67]. В это же время Toshiba пообещала выпуск HDD 18 ТБ с технологией MAMR в 2019 году[68], но также не смогла их реализовать, перенеся поставки на март 2021 года[69][70].
Структурированный (паттернированный) носитель данных (BPM — (англ. Bit-Patterned Media) — перспективная технология хранения данных на магнитном носителе, использующая для записи данных массив одинаковых магнитных ячеек, каждая из которых соответствует одному биту информации, в отличие от современных технологий магнитной записи, в которых бит информации записывается на нескольких магнитных доменах.
По данным Toshiba, технология структурированного носителя позволит повысить плотность записи жёстких дисков до 2,5 терабит на квадратный дюйм, что составит 25 терабайт для 3,5-дюймового жёсткого диска.
В октябре 2011 года группа физиков из Национального университета Сингапура показала возможность создания носителей данных с плотностью записи до 3,3 терабита на квадратный дюйм. В рамках этого исследования с помощью существенно упрощённого техпроцесса был создан прототип носителя
Устройство
Жёсткий диск состоит из гермозоны и блока электроники.
Гермоблок
|
|