Меню
Главная
Случайная статья
Настройки
|
Булева функция, сохраняющая 0, — булева функция такая, что .[1]
Булева функция, сохраняющая 1, — булева функция такая, что .[2]
Множество булевых функций, сохраняющих 0, образует замкнутый класс, предполный в . Множество булевых функций, сохраняющих 1, тоже образует замкнутый класс, предполный в .[3]
Всего существует функций от переменных, сохраняющих 0, и столько же функций от переменных, сохраняющих 1.[2] Примеры функций, сохраняющих 0: (функция голосования).[4] Примеры функций, сохраняющих 1: (функция голосования). Двойственная функции к функции, сохраняющей 0, сохраняет 1. Двойственная функции к функции, сохраняющей 1, сохраняет 0. Если функция сохраняющая константу самодвойственна, то она сохраняет и другую константу.
Булева функция сохраняет 0 тогда и только тогда, когда она является - или - функцией (то есть отождествление всех переменных функции или ). Булева функция сохраняет 1 тогда и только тогда, когда она является - или - функцией ( или ). В старой литературе именно это определение использовалось как основное.[5]
Булева функция сохраняет тогда и только тогда, когда её полином Жегалкина не содержит свободного члена. Булева функция сохраняет тогда и только тогда, когда её кополином Жегалкина не содержит свободного члена (то есть он равен , что для кополинома одно и то же). Из этого моментально следует, что порождает всё , а порождает всё .[5]
Содержание
Класс функций, сохраняющих 0
Множество всех функций, сохраняющих 0, образует замкнутый класс, предполный в . Таким образом, класс функций, сохраняющих 0, является одним из пяти предполных классов булевой логики. Класс функций, сохраняющих 0, обозначается [1] или [5] (обозначение Поста). В четыре предполных класса: (класс функций, сохраняющих обе константы), (класс монотонных функций, сохраняющих 0), (класс линейных функций, сохраняющих 0) и (класс функций, удовлетворяющих условию 1).[6] Любой собственный подкласс может быть достроен до предполного в . Как и для всех замкнутых классов в , для класса функций, сохраняющих 0, верен аналог малой теоремы Поста: система функций, сохраняющих 0, полна в тогда и только тогда, когда в ней содержится не сохраняющая функция, не монотонная функция, не линейная функция и не удовлетворяющая условию функция.
Примеры базисов в : [5]. Минимальное количество элементов в базисе — , максимальное — . В есть шефферовы функции, например .
содержит в себе счётное число замкнутых подклассов. Монотонная функция сохраняет 0 тогда и только тогда, когда она тождественно не равна единице. Линейная функция сохраняет 0 тогда и только тогда, когда её свободный член в полиноме Жегалкина равен (или число не равных тождественно членов в кополиноме нечётно). Самодвойственная функция сохраняет тогда и только тогда, когда она сохраняет . Самодвойственная функция сохраняет (а значит и ) тогда и только тогда, когда её -компонента сохраняет (переменную можно выбрать произвольно). Самодвойственная функция сохраняет (а значит и ) тогда и только тогда, когда её -компонента сохраняет (переменную можно выбрать произвольно).
Класс функций, сохраняющих 1
Множество всех функций, сохраняющих 1, образует замкнутый класс, предполный в . Таким образом, класс функций, сохраняющих 1, является одним из пяти предполных классов булевой логики. Класс функций, сохраняющих 1, обозначается [1] или [5] (обозначение Поста). В четыре предполных класса: (класс функций, сохраняющих обе константы), (класс монотонных функций, сохраняющих 1), (класс линейных функций, сохраняющих 1) и (класс функций, удовлетворяющий условию ).[6] Любой собственный подклассa может быть достроен до предполного в . Как и для всех замкнутых классов в , для класса функций, сохраняющих 1, верен аналог малой теоремы Поста: система функций, сохраняющих 1, полна в тогда и только тогда, когда в ней содержится не сохраняющая функция, не монотонная функция, не линейная функция и функцию, не удовлетворяющий условию .
Примеры базисов в : . Минимальное количество элементов в базисе — , максимальное — . В есть шефферовы функции, например .
содержит в себе счётное число замкнутых подклассов. Монотонная функция сохраняет 1 тогда и только тогда, когда она тождественно не равна нулю. Линейная функция сохраняет 1 тогда и только тогда, когда её свободный член в кополиноме Жегалкина равен (или число ненулевых членов в полиноме нечётно). Самодвойственная функция сохраняет тогда и только тогда, когда она сохраняет . Самодвойственная функция сохраняет (а значит и ) тогда и только тогда, когда её -компонента сохраняет (переменную можно выбрать произвольно). Самодвойственная функция сохраняет (а значит и ) тогда и только тогда, когда её -компонента сохраняет (переменную можно выбрать произвольно).
Лемма о функции, не сохраняющей константу
Лемма о функции, не сохраняющей 0. Из функции, не сохраняющей 0, можно получить константу или отрицание.[7]
Лемма о функции, не сохраняющей 1. Из функции, не сохраняющей 1, можно получить константу или отрицание.[8]
Оба утверждения являются следствием того факта, что - и -функции сохраняют 0, и - и -функции сохраняют 1. Чтобы получить указанные в леммах функции достаточно отождествить переменные у исходной функции.[9]
Примечания
- 1 2 3 Яблонский, 2008, с. 33-34.
- 1 2 Яблонский, 2008, с. 34.
- Яблонский, 2008, с. 41.
- Класс булевых функций, сохраняющих константу 0
- 1 2 3 4 5 Яблонский, Гаврилов, Кудрявцев, 1966, с. 46.
- 1 2 Яблонский, Гаврилов, Кудрявцев, 1966, с. 101.
- 15.1. Класс булевых функций, сохраняющих константу 0 . Дата обращения: 3 января 2025. Архивировано 3 января 2025 года.
- Полнота системы булевых функций, с. 6
- Полнота системы булевых функций, с. 7
Литература
|
|