Меню

Главная
Случайная статья
Настройки
Импликация
Материал из https://ru.wikipedia.org

Импликация (от лат. implicatio «связь; сплетение») — бинарная логическая связка, по своему применению приближенная к союзам «если…, то…».

Импликация записывается как посылка следствие; применяются также стрелки другой формы и направленные в другую сторону, но всегда указывающие на следствие.

Суждение, выражаемое импликацией, выражается также следующими способами[1][2]:

Импликация играет очень важную роль в умозаключениях. С её помощью формулируются определения различных понятий, теоремы, научные законы[3].

При учёте смыслового содержания высказываний импликация подразумевает причинную связь между посылкой и заключением[4].

Содержание

Булева логика

В булевой логике импликация — это функция двух переменных (они же — операнды операции, они же — аргументы функции). Переменные могут принимать значения из множества . Результат также принадлежит множеству . Вычисление результата производится по простому правилу либо по таблице истинности. Вместо значений может использоваться любая другая пара подходящих символов, например или или «ложь», «истина».

Правило:
Импликация как булева функция ложна лишь тогда, когда посылка истинна, а следствие ложно. Иными словами, операция  — это сокращённая запись выражения .


Таблицы истинности:

Прямая импликация (от a к b, ) (материальная импликация[англ.], материальный кондиционал[англ.])
  • если первый операнд не больше второго операнда, то 1,
  • если , то истинно (1).


«Житейский» смысл импликации. Для более лёгкого понимания смысла прямой импликации и запоминания её таблицы истинности может пригодиться житейская модель:
А — начальник. Он может приказать «работай» (1) или сказать «делай что хочешь» (0).
В — подчинённый. Он может работать (1) или бездельничать (0).


В таком случае импликация — не что иное, как послушание подчинённого начальнику. По таблице истинности легко проверить, что послушания нет только тогда, когда начальник приказывает работать, а подчинённый бездельничает.

Обратная импликация (от b к a, )
  • если первый операнд не меньше второго операнда, то 1,
  • если , то истинно (1).


Обратная импликация — отрицание (негация, инверсия) обнаружения увеличения (перехода от 0 к 1, инкремента).

Отрицание (инверсия, негация) прямой импликации, коимпликация[5] ()
  • если первый операнд больше второго операнда, то 1,
  • если , то истинно (1).


Отрицание (инверсия, негация) обратной импликации, обратная коимпликация (), разряд займа в двоичном полувычитателе.
  • если первый операнд меньше второго операнда, то 1,
  • если , то истинно (1).


Другими словами, две импликации (прямая и обратная) и две их инверсии — это четыре оператора отношений. Результат операций зависит от перемены мест операндов.

Синонимические импликации выражения в русском языке
  • Если А, то Б
  • Б в том случае, если А
  • При А будет Б
  • Из А следует Б
  • В случае А произойдёт Б
  • Б, так как А
  • Б, потому что А
  • А — достаточное условие для Б
  • Б — необходимое условие для А
  • А имплицирует Б
  • А влечёт Б


Многозначная логика

Теория множеств

Импликация высказываний означает, что одно из них следует из другого. Импликация обозначается символом , и ей соответствует вложение множеств: пусть , тогда


Например, если  — множество всех квадратов, а  — множество прямоугольников, то, конечно, и
(a — квадрат) (a — прямоугольник).


(если a является квадратом, то a является прямоугольником).

Классическая логика

В классическом исчислении высказываний свойства импликации определяются с помощью аксиом.

Можно доказать эквивалентность импликации формуле (с первого взгляда более очевидна её эквивалентность формуле , которая принимает значение «ложь» в случае, если выполняется A (посылка), но не выполняется B (следствие)). Поэтому любое высказывание можно заменить на эквивалентное ему без знаков импликации.
Downgrade Counter