Меню
Главная
Случайная статья
Настройки
|
Импликация (от лат. implicatio «связь; сплетение») — бинарная логическая связка, по своему применению приближенная к союзам «если…, то…».
Импликация записывается как посылка следствие; применяются также стрелки другой формы и направленные в другую сторону, но всегда указывающие на следствие.
Суждение, выражаемое импликацией, выражается также следующими способами[1][2]:
Импликация играет очень важную роль в умозаключениях. С её помощью формулируются определения различных понятий, теоремы, научные законы[3].
При учёте смыслового содержания высказываний импликация подразумевает причинную связь между посылкой и заключением[4].
Содержание
Булева логика
В булевой логике импликация — это функция двух переменных (они же — операнды операции, они же — аргументы функции). Переменные могут принимать значения из множества . Результат также принадлежит множеству . Вычисление результата производится по простому правилу либо по таблице истинности. Вместо значений может использоваться любая другая пара подходящих символов, например или или «ложь», «истина».
Правило:
- Импликация как булева функция ложна лишь тогда, когда посылка истинна, а следствие ложно. Иными словами, операция — это сокращённая запись выражения .
Таблицы истинности:
Прямая импликация
(от a к b, ) (материальная импликация[англ.], материальный кондиционал[англ.])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- если первый операнд не больше второго операнда, то 1,
- если , то истинно (1).
«Житейский» смысл импликации.
Для более лёгкого понимания смысла прямой импликации и запоминания её таблицы истинности может пригодиться житейская модель:
- А — начальник. Он может приказать «работай» (1) или сказать «делай что хочешь» (0).
- В — подчинённый. Он может работать (1) или бездельничать (0).
В таком случае импликация — не что иное, как послушание подчинённого начальнику.
По таблице истинности легко проверить, что послушания нет только тогда, когда начальник приказывает работать, а подчинённый бездельничает.
Обратная импликация (от b к a, )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- если первый операнд не меньше второго операнда, то 1,
- если , то истинно (1).
Обратная импликация — отрицание (негация, инверсия) обнаружения увеличения (перехода от 0 к 1, инкремента).
Отрицание (инверсия, негация) прямой импликации, коимпликация[5] ()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- если первый операнд больше второго операнда, то 1,
- если , то истинно (1).
Отрицание (инверсия, негация) обратной импликации, обратная коимпликация (),
разряд займа в двоичном полувычитателе.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- если первый операнд меньше второго операнда, то 1,
- если , то истинно (1).
Другими словами, две импликации (прямая и обратная) и две их инверсии — это четыре оператора отношений. Результат операций зависит от перемены мест операндов.
Синонимические импликации выражения в русском языке- Если А, то Б
- Б в том случае, если А
- При А будет Б
- Из А следует Б
- В случае А произойдёт Б
- Б, так как А
- Б, потому что А
- А — достаточное условие для Б
- Б — необходимое условие для А
- А имплицирует Б
- А влечёт Б
Многозначная логика
Теория множеств
Импликация высказываний означает, что одно из них следует из другого.
Импликация обозначается символом , и ей соответствует вложение множеств: пусть , тогда
Например, если — множество всех квадратов, а — множество прямоугольников, то,
конечно, и
- (a — квадрат) (a — прямоугольник).
(если a является квадратом, то a является прямоугольником).
Классическая логика
В классическом исчислении высказываний свойства импликации определяются с помощью аксиом.
Можно доказать эквивалентность импликации формуле (с первого взгляда более очевидна её эквивалентность формуле , которая принимает значение «ложь» в случае, если выполняется A (посылка), но не выполняется B (следствие)).
Поэтому любое высказывание можно заменить на эквивалентное ему без знаков импликации.
|
|