Меню
Главная
Случайная статья
Настройки
|
Неопределённый интеграл для функции — это совокупность всех первообразных данной функции[1].
Если функция определена и непрерывна на промежутке и — её первообразная, то есть при , то
- ,
где С — произвольная постоянная.
Основные свойства неопределённого интеграла приведены ниже.
- Если , то и , где — произвольная функция, имеющая непрерывную производную
Содержание
Подведение под знак дифференциала
При подведении под знак дифференциала используются следующие свойства:
Основные методы интегрирования
1. Метод введения нового аргумента. Если
то
где — непрерывно дифференцируемая функция.
2. Метод разложения. Если
то
3. Метод подстановки. Если — непрерывна, то, полагая
где непрерывна вместе со своей производной , получим
4. Метод интегрирования по частям. Если и — некоторые дифференцируемые функции от , то
Таблица основных неопределённых интегралов
-
-
Слева в каждом равенстве стоит произвольная (но определённая) первообразная функция для соответствующей подынтегральной функции, справа же — одна определённая первообразная, к которой ещё прибавляется константа такая, чтобы выполнялось равенство между этими функциями.
Первообразные функции в этих формулах определены и непрерывны на тех интервалах, на которых определены и непрерывны соответствующие подынтегральные функции. Эта закономерность не случайна: как отмечено выше, всякая непрерывная на интервале функция имеет на нём непрерывную первообразную.
См. также
Примечания
- Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
Литература- Никольский С. М. Глава 9. Определённый интеграл Римана // Курс математического анализа. — 1990. — Т. 1.
Ссылки
|
|