Меню
Главная
Случайная статья
Настройки
|
Обратная функция ошибок (англ. inverse error function) — специальная функция, определяемая как обратная функция к функции ошибок . Обозначается или .
Содержание
Связанные функции
Обратная дополнительная функция ошибок, обозначаемая , аналогично определяется как обратная к дополнительной функции ошибок и связана с следующим образом:
- [1].
Пробит-функция (англ. probit) — обратная функция к функции распределения стандартного нормального распределения [2][3], поэтому
- .
Свойства
Вещественная обратная функция ошибок определена при и является нечётной функцией[1].
является решением нелинейного дифференциального уравнения при начальных условиях и . Эта функция также удовлетворяет нелинейному дифференциально-интегральному уравнению [4].
Производная обратной функции ошибок равна , а первообразная — . Кроме того, известны следующие определённые интегралы:
- [5].
Ряд Тейлора
Ряд Маклорена для обратной функции ошибок имеет следующий вид:
- , где и [5].
Числителям и знаменателям коэффициентов в несокращённом виде соответствуют последовательность A002067 в OEIS и последовательность A007019 в OEIS соответственно. Будучи сокращёнными, они же образуют последовательность A092676 в OEIS и последовательность A092677 в OEIS[5].
Для старших производных обратной функции ошибок в точке также верно следующее соотношение:
- при условиях и , где [6].
При асимптотически [7].
Асимптотика
При функция представима асимптотическим рядом:
, где [8].
Кроме того, при верно , где — W-функция Ламберта[9].
Пусть и , а также
- .
Тогда . Это соотношение может быть использовано для итеративного приближённого вычисления в области малых :
- , где за начальное значение можно взять [10][11].
Применение
Обратная функция ошибок используется при численном решении уравнений диффузии и уравнений Эйнштейна для скалярного поля, а также вычислении химических потенциалов[12].
Уравнение диффузии
Одномерное уравнение диффузии вида с начальным условием и граничным условием , где является однозначной функцией , обычно решается приближёнными численными методами[13]. Однако при , достаточно близких к , изменение функции можно считать малым[14].
Пусть интервал от до разбит на равных частей длиной , и . Тогда на отрезке функцию можно заменить константой . В таком случае исходное уравнение сведётся к
- .
Оно имеет точное решение в виде , где [15].
В программном обеспечении
В языке Wolfram обратная функция ошибок вызывается через InverseErf[s] , где — произвольный вещественный аргумент от –1 до 1. Кроме того, InverseErf[s, z0] возвращает функцию, обратную к [16].
Библиотека boost/math для C++ содержит функцию erf_inv(T p, const Policy&) , первый аргумент которой соответствует аргументу , а второй, необязательный, указывает точность вычисления и способ обработки исключений[17].
Библиотека SciPy для Python также содержит реализацию , она называется erfinv(y, out=None) . Первый аргумент обязателен и должен содержать значение или список значений аргумента , а второй опционален и может содержать список, в который будут помещены значения функции . Эта функция является обёрткой для функции erf_inv() из boost/math для C++[18].
Примечания
- 1 2 Blair, Edwards & Johnson, 1976, p. 827—828.
- Dominici, 2003, p. 2.
- Weisstein, Eric W. Normal Distribution Function (англ.) на сайте Wolfram MathWorld.
- Dominici, 2008, p. 2.
- 1 2 3 Weisstein, Eric W. Inverse Erf (англ.) на сайте Wolfram MathWorld.
- Dominici, 2008, p. 3.
- Dominici, 2008, p. 9.
- Blair, Edwards & Johnson, 1976, p. 828.
- Dominici, 2008, p. 12.
- Fettis, 1974, p. 585—586.
- Corrigenda, 1975, p. 673.
- Dominici, 2008, p. 1.
- Philip, 1955, p. 885.
- Philip, 1955, p. 887.
- Philip, 1955, p. 886—887.
- InverseErf — Wolfram Documentation . Дата обращения: 30 сентября 2025.
- Error Function Inverses . Дата обращения: 30 сентября 2025.
- scipy.special.erfinv — SciPy v1.16.2 Manual . Дата обращения: 30 сентября 2025.
Литература
|
|