Меню
Главная
Случайная статья
Настройки
|
Отрицательное биномиальное распределение, также называемое распределением Паскаля — это распределение дискретной случайной величины, равной числу произошедших неудач в последовательности испытаний Бернулли с вероятностью успеха , проводимых до -го успеха.
Содержание
Определение
Пусть — последовательность независимых случайных величин с распределением Бернулли, то есть
Построим случайную величину следующим образом. Пусть — номер -го успеха в этой последовательности. Тогда . Более строго, положим . Тогда
- .
Распределение случайной величины , определённой таким образом, называется отрицательным биномиальным. Пишут: .
Функции вероятности и распределения
Функция вероятности случайной величины имеет вид:
- .
Функция распределения кусочно-постоянна, и её значения в целых точках может быть выражено через неполную бета-функцию:
- .
Моменты
Производящая функция моментов отрицательного биномиального распределения имеет вид:
- ,
откуда
Свойства
Пусть , тогда
Частные случаи отрицательного биномиального распределения
Примечания
- 1 2 Schopper H. (Ed.) Electron - Positron Interactions. Berlin, Heidelberg: Springer-Verlag. 1992. P. 133// https://www.twirpx.org/file/3458790/ Архивная копия от 10 мая 2021 на Wayback Machine
|
|