Меню
Главная
Случайная статья
Настройки
|
Вектор Умова — Пойнтинга (также вектор Пойнтинга ) — вектор плотности потока энергии электромагнитного поля, компоненты которого входят в состав тензора энергии-импульса электромагнитного поля[1].
Вектор Умова — Пойнтинга S можно определить через векторное произведение двух векторов:
- (в системе СГС),
- (в Международной системе единиц (СИ)),
где
Модуль вектора Умова — Пойнтинга равен количеству энергии, переносимой через единичную площадь, нормальную к
Поскольку тангенциальные к границе раздела двух сред компоненты
Содержание
Случай электромагнитной волны
Пусть электромагнитная волна распространяется в вакууме () и пусть её скорость равна . Тогда полная плотность электромагнитной энергии будет складываться из плотностей энергии электрического поля и энергии магнитного поля
В вакууме и изменяются синфазно, следовательно, можно положить, что
Тогда
Умножив последнее выражение на получим для модуля плотности потока энергии
В случае квазимонохроматических электромагнитных полей справедливы следующие формулы для усреднённой по периоду комплексной плотности потока энергии[2]:
- (в системе СГС),
- (в системе СИ),
где
Вектор Умова — Пойнтинга и импульс электромагнитного поля
В силу симметричности тензора энергии-импульса все три компоненты вектора пространственной плотности импульса электромагнитного поля равны соответствующим компонентам вектора Пойнтинга, делённым на квадрат скорости света:
- (в системе СИ).
В этом соотношении проявляется материальность электромагнитного поля.
Поэтому, чтобы узнать импульс электромагнитного поля в той или иной области пространства, достаточно проинтегрировать вектор Пойнтинга по объёму.
История
Общее представление о потоке механической энергии в пространстве впервые было введено Н. А. Умовым в 1874 году для упругих сред и вязких жидкостей. На этом основании в более старых русскоязычных публикациях вектор плотности потока энергии любой физической природы называется вектором Умова[3]. В 1884 году Д. Г. Пойнтингом[4] были разработаны представления о плотности потока электромагнитной энергии. Поэтому вектор плотности потока электромагнитной энергии многими называется вектором Пойнтинга.
Сами же законы сохранения и превращения энергии, где присутствует понятие плотности потока какого-либо вида энергии, используются, как правило, без указания имен первооткрывателей, поскольку законы сохранения являются следствием других уравнений и дополнительных условий.
См. также
Источники
- Пойнтинга вектор // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1992. — Т. 3: Магнитоплазменный — Пойнтинга теорема. — С. 671. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
-
Марков Г. Т., Сазонов Д. М. Глава 1. Электродинамические основы теории антенн, § 1-1. Уравнения Максвелла // Антенны. — М.: Энергия, 1975. — С. 16—17. — 528 с.
- Сивухин Д. В. Общий курс физики. — М.: Наука, 1977. — Т. III. Электричество. — С. 364. — 688 с.
- Фейнман Р. Глава 27. Энергия поля и его импульс. § 3. Плотность энергии и поток энергии в электромагнитном поле // Лекции по физике. — Вып. 4. — М.: Мир, 1965. — Т. 6. Электродинамика. — С. 286—290. — 340 с.
|
|