Меню
Главная
Случайная статья
Настройки
|
Ребро в геометрии — отрезок, соединяющий две вершины многоугольника или многогранника (в размерностях 3 и выше)[1]. В многоугольниках ребро является отрезком, лежащим на границе[2] и чаще называется стороной многоугольника. В трёхмерных многогранниках и в многогранниках большей размерности ребро — это отрезок, общий для двух граней[3]. Отрезок, соединяющий две вершины и проходящий через внутренние или внешние точки, ребром не является и называется диагональю.
Содержание
Связь с рёбрами графа
Любой многогранник может быть представлен его рёберным скелетом[англ.], то есть графом, вершинами которого служат геометрические вершины многогранника, а рёбра графа соответствуют геометрическим рёбрам[4]. И обратно, графы, являющиеся скелетами трёхмерных многогранников по теореме Штайница — то же самое, что вершинно k-связные планарные графы[5].
Число рёбер в многограннике
Любая поверхность выпуклого многогранника имеет эйлерову характеристику
где — число вершин, — число рёбер, а — число граней. Это равенство известно как формула Эйлера. Таким образом, число рёбер на 2 меньше суммы числа вершин и граней. Например, куб имеет 8 вершин и 6 граней, а потому (по формуле) 12 рёбер.
Инцидентность другим граням
В многоугольнике в каждой вершине сходятся два ребра (стороны). По теореме Балинского по меньшей мере рёбер сходятся в каждой вершине -мерного выпуклого многогранника[6].
Аналогично, в трёхмерном многограннике в точности две двумерные грани имеют общее ребро[7], в то время как в многогранниках более высоких размерностей общее ребро могут иметь три и более двумерных граней.
Альтернативная терминология
В теории выпуклых многогранников высоких размерностей (свыше 3) фасета (сторона -мерного многогранника) — это -мерная грань. Таким образом, рёбра (стороны) многоугольника являются также фасетами (для трёхмерных многогранников фасетами будут грани)[8].
См. также
Примечания
- Ziegler, 1995, с. 51, Definition 2.1.
- Weisstein, Eric W. «Polygon Edge.» From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolygonEdge.html Архивная копия от 26 июля 2020 на Wayback Machine
- Weisstein, Eric W. «Polytope Edge.» From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolytopeEdge.html Архивная копия от 24 мая 2016 на Wayback Machine
- Senechal, 2013, с. 81.
- Pisanski, Randi, 2000, с. 174–194.
- Balinski, 1961, с. 431–434.
- Wenninger, 1974, с. 1.
- Seidel, 1986, с. 404–413.
Литература
Ссылки
|
|