Меню
Главная
Случайная статья
Настройки
|
Система корней (корневая система) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.
Эта концепция является фундаментальной в теории групп Ли и алгебр Ли.
Диаграммы Коксетера — Дынкина, использующиеся при классификации систем корней, встречается в разделах математики, не связанных явно с группами Ли, например, в теории сингулярностей.
Содержание
Определение
Пусть — конечномерное евклидово пространство с обычным скалярным произведением, обозначаемым . Система корней в — это конечное множество ненулевых векторов (называемых корнями), которые удовлетворяют следующим свойствам.
- является линейной оболочкой системы корней.
- Если два корня , являются коллинеарными векторами, то либо они совпадают, либо
- Для каждого корня множество замкнуто относительно отражения в гиперплоскости, перпендикулярной То есть для любых двух корней и множество содержит отражение
- (Целостное условие). Если и — корни в то проекция на прямую, проходящую через есть полуцелое, кратное То есть
Замечания- С учётом свойства 3 целостное условие эквивалентно утверждению, что разность между и его отражением равна корню , умноженному на некоторое целое число.
- Оператор
- ,
- определённый свойством 4, не является внутренним произведением. Он, вообще говоря, не симметричен и линеен только по первому аргументу.
Размерность называют рангом системы корней.
Классификация систем корней подиаграммам Дынкина
Примеры систем корней ранга 1 и ранга 2
Существует только одна система корней ранга 1. Она состоит из двух ненулевых векторов Эта система называется
В ранге 2 существуют четыре возможных варианта где
|
|
Система корней
|
Система корней
|
|
|
Система корней
|
Система корней
|
Система корней ранга 2
См. также
Ссылки
|
|