Меню
Главная
Случайная статья
Настройки
|
Сложение (прибавление[2]) — одна из основных бинарных математических операций (арифметических действий) двух аргументов (слагаемых), результатом которой является новое число (сумма), получаемое увеличением значения первого аргумента на значение второго аргумента. То есть каждой паре элементов из множества ставится в соответствие элемент , называемый суммой и .
Обратная операция к сложению — вычитание[3].
Это одна из четырёх элементарных[англ.] математических операций арифметики. Приоритет её в обычном порядке операций равен приоритету вычитания, но ниже, чем у возведения в степень, извлечения корня, умножения и деления[4]. На письме сложение обычно обозначается с помощью знака «плюс»: , то есть аддитивной записью.
У сложения есть несколько важных свойств (например, для ) (см. Сумма):
- Коммутативность:
- Ассоциативность:
- Дистрибутивность: и
- Прибавление (нулевого элемента) даёт число, равное исходному:
Используя систематические обобщения, сложение можно определить для абстрактных величин, таких как целые числа, рациональные числа, вещественные числа и комплексные числа и для других абстрактных объектов, таких как векторы и матрицы.
Сложение возможно, только если оба аргумента принадлежат одному множеству элементов (имеют одинаковый тип). Так, на картинке справа запись обозначает три яблока и два яблока вместе, что в сумме даёт пять яблок. Но нельзя сложить, например, 3 яблока и 2 груши.
Как правило, сложение не используется для наименования операций, которые не подчиняются коммутативному и ассоциативному законам[5][6].
В теории групп обычно сложением называют операцию в абелевой группе (при аддитивной записи) и ту бинарную операцию в кольце, относительно которой элементы кольца образуют абелеву группу, где сложение ассоциативно и коммутативно. Иногда сложением называется и некоммутативная групповая операция, например, операция в мультиоператорной группе[3].
Сложение небольших чисел является одним из первых навыков, прививаемых детям в начальной школе.
Известны различные устройства для сложения: от древних абаков и классических русских счётов до современных компьютеров и калькуляторов.
Содержание
Формы записи и терминология
Сложение записывается с использованием символа плюса «+» между слагаемыми; такая форма записи называется инфиксной нотацией. Результат записывается с использованием знака равенства. Например,
- («а плюс бэ равно цэ»)
- («один плюс один равно двум»)
- («два плюс два равно четырём»)
- (см. «ассоциативность» ниже)
- (см. «умножение» ниже)
В ряде ситуаций подразумевается сложение, но при этом символы сложения не используются:
- В записи чисел в позиционных системах счисления: запись числа подразумевает суммирование ряда [7].
- Если имеется столбец чисел, последнее (нижнее) число в котором подчёркнуто, то обычно подразумевается, что все числа в этом столбце складываются, а полученная сумма записывается ниже подчёркнутого числа.
- Если имеется запись, когда перед дробью стоит целое число, то эта запись означает сумму двух слагаемых — целого числа и дроби, которую называют смешанным числом[8]. Например,
3 = 3 + = 3.5. Такая запись может вызвать путаницу, поскольку в большинстве других случаев подобная запись означает умножение, а не сложение[9].
Сумма ряда связанных чисел может быть записана с использованием символа , который позволяет компактно записать итерацию. Например,
Слагаемые — это числа или объекты, складываемые друг с другом[10].
Символ плюса «+» (Юникод:U+002B; ASCII: + ) — упрощение латинского слова «et», означающего «и»[11]. Впервые этот символ встречается в книгах, начиная с 1489 г.[12]
Интерпретации
Сложение используется для моделирования бесчисленного множества физических процессов. Даже для простого сложения натуральных чисел существует много различных интерпретаций и ещё больше способов визуального представления.
Комбинирование наборов
Возможно, самая фундаментальная интерпретация сложения — комбинирование наборов:
- Если два или более не пересекающихся наборов объектов объединены в один набор, то число объектов в полученном наборе равно сумме числа объектов в исходных наборах.
Эту интерпретацию легко визуализировать, при этом опасность двусмысленности будет минимальной. Однако непонятно, как с помощью этой интерпретации сложения объяснить сложение дробных или отрицательных чисел[13].
Одним из возможных решений будет обращение к набору объектов, которые могут быть легко разделены, например, пироги или стержни с сегментами[14]. Вместо комбинирования наборов сегментов стержни могут быть присоединены друг к другу концами, что иллюстрирует другую концепцию сложения: складываются не стержни, складываются их длины.
Расширение длины
Вторая интерпретация сложения заключается в расширении начальной длины на величину добавляемой длины:
- Когда начальная длина расширяется добавляемой длиной, то полученная длина равна сумме начальной длины и длины, которую к ней добавили[15].
Сумму a + b можно интерпретировать как бинарную операцию объединения a и b в алгебраическом смысле, также её можно интерпретировать как добавление b единиц к числу a. В последней интерпретации части суммы a + b играют асимметричные роли, и операция a + b рассматривается как применение к числу a унарной операции +b[16]. Унарный подход позволяет перейти к вычитанию, ведь каждая унарная операция сложения имеет обратную унарную операцию вычитания и наоборот.
Свойства
Операция сложения на числовых множествах имеет следующие основные свойства:
Коммутативность
Сложение коммутативно — от перемены мест слагаемых сумма не меняется (это свойство также известно как переместительный закон сложения):
Есть и другие законы коммутативности: например, существует коммутативный закон умножения. Тем не менее многие бинарные операции, например, вычитание и деление, не коммутативны.
Ассоциативность
Сложение ассоциативно — при последовательном выполнении сложения трёх или более чисел последовательность выполнения операций не имеет значения (сочетательный закон сложения):
Дистрибутивность
Сложение дистрибутивно, это — свойство согласованности двух бинарных операций, определённых на одном и том же множестве (распределительный закон)[17] :
Нейтральный элемент
Относительно сложения в множестве существует единственный нейтральный элемент, сложение числа с (нулевым или нейтральным элементом) даёт число, равное исходному:
Этот закон был впервые описан в Исправленном трактате Брахмы[англ.], который был написан Брахмагуптой в 628 г. Он написал этот закон в виде трёх отдельных законов: для отрицательного, положительного и нулевого числа a, и для описания этих законов он использовал слова, а не алгебраические символы. Позже индийские математики уточнили понятия; около 840 г., Махавира[англ.] написал, что «ноль становится таким же, как то, что добавляется к нему», что соответствовало записи 0 + a = a. В XII веке Бхаскара II написал: «Если добавить ничего или вычесть ничего, то количество, положительное или отрицательное, остаётся таким же, как и было», что соответствует записи a + 0 = a[18].
Обратный элемент
Сложение с противоположным элементом даёт :
[19]
Кроме того, сложение не выводит результат за пределы данного множества чисел, следовательно, замкнуты относительно операции сложения. Эти множества с операциями и образуют кольца (коммутативные кольца с единицей)[20].
На языке общей алгебры вышеперечисленные свойства сложения говорят о том, что — абелевы группы относительно операции сложения.
Выполнение сложения
Операцию сложения можно представить как некий «чёрный ящик» с двумя слагаемыми на входе и одним выходом - суммой:[21][22]
При практическом решении задачи сложения двух чисел необходимо свести её к последовательности более простых операций: "простое сложение"[источник не указан 3292 дня], перенос, сравнение и др. Для этого разработаны различные методы сложения, например для чисел, дробей, векторов и др. На числовых множествах используется алгоритм поразрядного сложения[23]. При этом следует рассматривать сложение как процедуру (в отличие от операции).
Как видим, процедура достаточно сложная, состоит из относительно большого числа шагов и при сложении больших чисел может занять продолжительное время.
где - последовательность операций инкрементирования, выполненная и раз.
В худшем случае нахождение десятичной суммы двух десятичных одноразрядных чисел последовательным инкрементированием выполняется за 9 + 9 = 18 операций инкрементирования. В табличном десятичном полусумматоре нахождение десятичной суммы двух десятичных одноразрядных чисел выполняется за одну операцию чтения числа из массива чисел 10x10, т.е. быстрее, чем последовательным инкрементированием.
"Простое сложение" (одноразрядное двухоперандное (двухаргументное) десятичное сложение) является одной из бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функций с бинарным (двухразрядным) результатом, имеющей кроме собственного номера и собственное название словами: "одноразрядный десятичный полусумматор".
Десятичной функцией в теории функциональных систем и в десятичной логике называют функцию типа , где — десятичное множество, а — неотрицательное целое число, которое называют арностью или местностью функции.
Всего существует простейших бинарных с бинарным (двухразрядным) результатом десятичных логических функций (2 децита -> 2 децита), где m - количество аргументов функции (входная "-арность"), а n - количество результатов действия функции (выходная "-арность"), что больше всех больших чисел Дирака вместе взятых и числа Шеннона (оценочное минимальное количество неповторяющихся шахматных партий, вычисленное в 1950 году американским математиком Клодом Шенноном, составляет приблизительно ) впридачу.
Одноразрядное двухоперандное (двухаргументное) десятичное сложение можно также представить, как комбинацию (объединение двух) бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функцией с унарным (одноразрядным) результатом, имеющих кроме собственных номеров и собственные названия словами: "одноразрядное десятичное бинарное сложение по модулю 10" и "единица переноса в следующий разряд при одноразрядном десятичном бинарном сложении".
Всего существует простейших бинарных с унарным (одноразрядным) результатом десятичных логических функций (2 децита -> 1 децит).
Номер функции "одноразрядное десятичное бинарное сложение по модулю 10" содержит все значения функции при переборе значений аргументов от 0 до 9 и относительно просто получается из таблицы десятичного полусумматора: 8765432109 7654321098 6543210987 5432109876 4321098765 3210987654 2109876543 1098765432 0987654321 9876543210 (пробелы отделяют по 10 знаков в номере функции).
Номер функции "единица переноса в следующий разряд при одноразрядном десятичном бинарном сложении" содержит все значения функции при переборе значений аргументов от 0 до 9 и тоже относительно просто получается из таблицы десятичного полусумматора:
1111111110 1111111100 1111111000 1111110000 1111100000 1111000000 1110000000 1100000000 1000000000 0000000000 (пробелы отделяют по 10 знаков в номере функции).
Так как в разряде переноса не бывает значения больше 1, то разряд переноса в одноразрядном десятичном полусумматоре является более простой десятичной функцией с унарным (одноразрядным) двоичным результатом (2 децита -> 1 бит).
|
|