Меню

Главная
Случайная статья
Настройки
Специальная теория относительности
Материал из https://ru.wikipedia.org

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света (в рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей). Фактически СТО описывает геометрию четырёхмерного пространства-времени и основана на плоском (то есть неискривлённом) пространстве Минковского. Обобщение СТО для сильных гравитационных полей называется общей теорией относительности.

Основным отличием СТО от классической механики является зависимость (наблюдаемых) пространственных и временных характеристик от скорости. Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями.

Центральное место в специальной теории относительности занимают преобразования Лоренца, позволяющие преобразовывать пространственно-временные координаты событий при переходе от одной инерциальной системы отсчёта к другой, когда одна из них движется относительно другой с определённой скоростью.

Специальная теория относительности была создана Альбертом Эйнштейном в работе 1905 года «К электродинамике движущихся тел». Математический аппарат преобразований координат и времени между различными системами отсчёта (с целью сохранения уравнений электромагнитного поля) был ранее сформулирован французским математиком А. Пуанкаре (который и предложил их назвать «преобразованиями Лоренца»: сам Лоренц вывел до этого только приближённые формулы[К. 1]). А. Пуанкаре также первым показал, что эти преобразования можно геометрически представить как повороты в четырёхмерном пространстве-времени (опередив Г. Минковского), и показал, что преобразования Лоренца образуют группу (см. о роли Пуанкаре в создании теории относительности подробнее).

Непосредственно термин «теория относительности» был предложен М. Планком. В дальнейшем, после разработки А. Эйнштейном теории гравитации — общей теории относительности — к первоначальной теории начал применяться термин «специальная» или «частная» теория относительности (от нем. Spezielle Relativittstheorie).

Содержание

Создание СТО

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики[1]. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие свойства электромагнитного поля и его взаимодействие с зарядами и токами. В электродинамике Максвелла и фактологии астрономических наблюдений задолго до него, скорость распространения электромагнитных волн в вакууме относительно приёмника не зависит от скорости движения источника этих волн и равна скорости света. Независимость же скорости волн от скорости источника относительно самого источника только предполагалась, то есть была гипотетической. Однако с признанием обоих условий как "постулатов скорости света", уравнения Максвелла оказались неинвариантными относительно преобразований Галилея, что противоречило классической механике.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных [2] (см. История теории относительности). Экспериментальной основой для создания СТО послужил опыт Майкельсона, подтвердивший первый постулат скорости света. Результаты оказались неожиданными для классической физики того времени: скорость света не зависит от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать полученные данные вылилась в пересмотр классических представлений и привела к созданию специальной теории относительности.

При движении со скоростями, всё более приближающимися к скорости света, отклонение от законов классической динамики становится всё более существенным. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован в соответствии с принципами СТО. Также импульс и кинетическая энергия тела сложнее зависят от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является верной теорией в своей области применимости[3] (см. Экспериментальные основания СТО). По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности — нужно лишь уметь слушать»[4].

Основные понятия и постулаты СТО

Специальная теория относительности, как и любая другая физическая теория, может быть сформулирована на базе из основных понятий и постулатов (аксиом) и правил соответствия её физическим объектам.

Основные понятия

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

Инерциальная система отсчёта (ИСО) — такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что ИСО существуют, и любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО.

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.

Обычно рассматриваются две инерциальные системы S и S'. Время и координаты некоторого события, измеренные в системе S, обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные в системе S', как (t', x', y', z'). Удобно считать, что координатные оси систем параллельны друг другу, и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются преобразованиями Лоренца.

Синхронизация времени

В СТО постулируется возможность определения единого времени в рамках данной инерциальной системы отсчёта процедурой синхронизации двух часов, находящихся в произвольных точках ИСО[5].

Пусть от первых часов в момент времени ко вторым посылается сигнал (не обязательно световой) с постоянной скоростью . Сразу по достижении вторых часов сигнал отправляется обратно с той же постоянной скоростью и достигает первых часов в момент времени . Часы считаются синхронизированными, если выполняется соотношение , где — показание вторых часов в момент прихода к ним сигнала от первых часов.

Предполагается, что такая процедура в данной инерциальной системе отсчёта может быть проведена для любых двух часов, так что справедливо свойство транзитивности: если часы A синхронизированы с часами B, а часы B синхронизированы с часами C, то часы A и C также окажутся синхронизированными.

В отличие от классической механики, единое время можно ввести только в рамках данной системы отсчёта. В СТО не предполагается, что время является общим для различных систем. В этом состоит основное отличие аксиоматики СТО от классической механики, в которой постулируется существование единого (абсолютного) времени для всех систем отсчёта.

Согласование единиц измерения

Чтобы измерения, выполненные в различных ИСО, можно было между собой сравнивать, необходимо провести согласование единиц измерения между системами отсчёта. Так, единицы длины могут быть согласованы при помощи сравнения эталонов длины в перпендикулярном направлении к относительному движению инерциальных систем отсчёта[6]. Например, это может быть кратчайшее расстояние между траекториями двух частиц, движущихся параллельно осям x и x' и имеющих различные, но постоянные координаты (y, z) и (y',z'). Для согласования единиц измерения времени можно использовать идентично устроенные часы, например, атомные.

Постулаты СТО

В первую очередь в СТО, как и в классической механике, предполагается, что пространство и время однородны, а пространство также изотропно[7]. Если быть более точным (современный подход), инерциальные системы отсчёта собственно и определяются как такие системы отсчёта, в которых пространство однородно и изотропно, а время однородно. По сути существование таких систем отсчёта постулируется.

Постулат 1 (принцип относительности Эйнштейна). Законы природы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[8]. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.

Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение инерциальных систем отсчёта.

Формально, принцип относительности Эйнштейна распространяет классический принцип относительности (Галилея) с механических на все физические явления. Однако, если учесть, что во времена Галилея физика заключалась собственно в механике, то и классический принцип тоже можно было считать распространяющимся на все физические явления. В том числе он должен распространяться и на электромагнитные явления, описываемые уравнениями Максвелла, которые выведены из эмпирически выявленных закономерностей. Однако, согласно последним, скорость распространения света является определённой величиной, не зависящей от скорости источника (по крайней мере в одной системе отсчёта). Из принципа относительности следует, что она не должна зависеть от скорости источника во всех ИСО в силу их равноправности. А значит, она должна быть постоянной во всех ИСО. В этом заключается суть второго постулата:

Постулат 2 (принцип постоянства скорости света). Скорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[8].

Принцип постоянства скорости света противоречит классической механике, а конкретно — закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно быть относительным — неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что «расстояния» также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе — за другое время и притом с той же скоростью, то отсюда следует, что и расстояние в этой системе должно отличаться.

Световые сигналы не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа , возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт, согласно современной квантовой теории поля (уравнения которой изначально строятся как релятивистски инвариантные) связан с безмассовостью электромагнитного поля (фотона). Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную константу — скорость и скорость света [9]. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия.

Также используется постулат причинности: любое событие может оказывать влияние только на события, происходящие позже него, и не может оказывать влияние на события, произошедшие раньше него[10][11][12]. Из постулата причинности и независимости скорости света от выбора системы отсчёта следует, что скорость любого сигнала не может превышать скорость света[13][14][12].

После построения Эйнштейном СТО на основе вышеуказанных постулатов многие исследователи пытались отказаться от второго постулата вообще. Спустя 5 лет после известной статьи Эйнштейна 1905 года, благодаря работам Игнатовского[15], Ф.Франка и Г.Роте[16] (см. исторический очерк) стал известен способ получения общего вида (с точностью до неопределённой константы) преобразований Лоренца без использования второго постулата. При «правильном» знаке неопределённого параметра эти преобразования совпадают с преобразованиями Лоренца. Из этого следует наличие максимальной скорости, одинаковой во всех ИСО. Тем не менее, знак этой константы из предложенных аксиом никак не следует. Предлагается оценивать значение параметра экспериментально. Чтобы измерить этот параметр, а значит, и фундаментальную скорость , нет необходимости проводить электродинамические эксперименты. Можно, например, на основе измерений скорости одного и того же объекта в разных ИСО воспользоваться законом сложения скоростей с неопределённым параметром[17]. Экспериментальное «вычисление» знака неопределённой константы фактически эквивалентно предположению о наличии максимальной скорости, то есть по существу второму постулату.

Тем не менее, попытки аксиоматизации, в том числе без второго постулата, предпринимались позднее и другими исследователями. Существуют также аксиоматики, которые не используют принцип относительности — а только принцип постоянства скорости света. Более подробно с ними можно ознакомиться в статье А. К. Гуца[18].

Преобразования Лоренца

Пусть координатные оси двух инерциальных систем отсчёта и параллельны друг другу,  — время и координаты некоторого события, наблюдаемого в системе отсчёта , а  — время и координаты того же события в системе .

Общий вид преобразований Лоренца в векторном виде[19], когда скорость систем отсчёта имеет произвольное направление:


где  — фактор Лоренца, и  — радиус-векторы события в системе и .

Если сориентировать координатные оси по направлению относительного движения инерциальных систем (то есть в общие формулы подставить ) и выбрать это направление в качестве оси (то есть так, чтобы система двигалась равномерно и прямолинейно со скоростью относительно вдоль оси ), то преобразования Лоренца примут следующий вид:


где  — скорость света. При скоростях много меньше скорости света () преобразования Лоренца переходят в преобразования Галилея:


Подобный предельный переход является отражением принципа соответствия, согласно которому более общая теория (СТО) имеет своим предельным случаем менее общую теорию (в данном случае — классическую механику).

Вывод преобразований Лоренца

Существует множество способов вывода преобразований Лоренца. Рассмотрим один из вариантов.

Пусть начало координат системы (в силу однородности пространства это может быть любая покоящаяся в этой системе точка) движется относительно системы со скоростью . Соответственно, начало координат (покоящаяся точка) системы движется в со скоростью . В целях упрощения изложения будем предполагать совпадение начал отсчёта обеих ИСО (, когда ) и одинаковой ориентированности координатных осей. Пусть скорость системы () направлена по оси (против оси ).

При относительном движении систем вдоль оси x можно считать, что . Будем исследовать преобразования для одномерного пространства и рассматривать векторы двумерного пространства — времени .

В силу однородности пространства и времени, изотропности пространства и принципа относительности преобразования от одной ИСО к другой должны быть линейными[20][21]. Линейность преобразований можно также вывести, предполагая, что если два объекта имеют одинаковые скорости относительно одной ИСО, то их скорости будут равны и в любой другой ИСО[22], (при этом необходимо использовать также слабые предположения о дифференцируемости и взаимной однозначности функций преобразования). Если использовать только «определение» ИСО: если некоторое тело имеет постоянную скорость относительно одной инерциальной системы отсчёта, то его скорость будет постоянна и относительно любой другой ИСО, то можно показать только, что преобразования между двумя ИСО должны быть дробно-линейными функциями координат и времени с одинаковым знаменателем[16][23].

Таким образом, если  — пространственно-временной вектор в системе , то будем предполагать, что , где— матрица искомого линейного преобразования, зависящая только от относительной скорости рассматриваемых ИСО, то есть . Тогда линейное преобразование и закон сложения скоростей имеют следующий общий вид (структуру):
Downgrade Counter