Меню
Главная
Случайная статья
Настройки
|
Уравнение Ван-дер-Ваальса (или уравнение Ван дер Ваальса[К 1]) — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.
Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.
Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия становится функцией не только температуры, но и объёма.
Уравнение Ван-дер-Ваальса — это одно из широко известных приближённых уравнений состояния, описывающее свойства реального газа, имеющее компактную форму и учитывающее основные характеристики газа с межмолекулярным взаимодействием[7].
Содержание
Уравнение состояния
Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.
Для одного моля газа Ван-дер-Ваальса оно имеет вид:
где
Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка учитывает силы притяжения между молекулами (давление на стенку уменьшается, так как есть силы, втягивающие молекулы приграничного слоя внутрь), поправка — суммарный объём молекул газа.
Для молей газа Ван-дер-Ваальса уравнение состояния выглядит так:
где
- — объём.
Из рисунка, на котором изображены изотермы газа Ван-дер-Ваальса, видно, что ниже некоторой температуры зависимость перестаёт быть монотонной: образуется петля Ван-дер-Ваальса, в которой увеличению давления соответствует увеличение объёма, что противоречит законам термодинамики. Появление петли означает, что уравнение Ван-дер-Ваальса в данной области изменения и перестаёт описывать действительную ситуацию, когда имеет место фазовый переход газ — жидкость и реальная изотерма представляет собой отрезок прямой — конноду (ноду), соединяющую две фигуративные точки на бинодали.
Вывод уравнения
Наиболее известны два способа получения уравнения: традиционный вывод самого Ван-дер-Ваальса и вывод методами статистической физики.
Традиционный вывод
Рассмотрим сначала газ, в котором частицы не взаимодействуют друг с другом, такой газ удовлетворяет уравнению состояния идеального газа:
Далее предположим, что частицы данного газа являются упругими сферами одинакового радиуса . Так как газ находится в сосуде конечного объёма, то пространство, где могут перемещаться частицы, будет несколько меньше. В исходной формуле следует вычесть из всего объёма некую его часть , которая, вообще говоря, зависит только от вещества, из которого состоит газ. Таким образом, получается следующее уравнение:
Вычитаемый объём не будет в точности равен суммарному объёму всех частиц. Если частицы считать твёрдыми и абсолютно упругими шариками, то вычитаемый объём будет примерно в четыре раза больше. Это легко объясняется тем, что центры упругих шаров не могут приближаться на расстояние ближе .
Далее Ван-дер-Ваальс рассматривает силы притяжения между частицами газа и делает следующие допущения:
- Частицы распределены равномерно по всему объёму.
- Силы притяжения стенок сосуда не учитываются, что в общем случае неверно.
- Частицы, находящиеся внутри сосуда и непосредственно у стенок, ощущают притяжение по-разному: внутри сосуда действующие силы притяжения других частиц компенсируют друг друга.
Таким образом, для частиц внутри сосуда силы притяжения не учитываются. Частицы, находящиеся непосредственно у края сосуда, затягиваются внутрь силой, пропорциональной концентрации:
- .
Число частиц, которые находятся непосредственно у стенок, в свою очередь тоже предполагается пропорциональным концентрации . Можно считать, что давление на стенки сосуда меньше на некоторую величину, обратно пропорциональную квадрату объёма:
Окончательное уравнение:
Внутренняя энергия газа Ван-дер-Ваальса
Потенциальная энергия межмолекулярных сил взаимодействия вычисляется как работа, которую совершают эти силы при разведении молекул на бесконечность:
Внутренняя энергия газа Ван-дер-Ваальса складывается из кинетической энергии хаотического (теплового) движения молекул относительно центра масс газа и только что нами посчитанной потенциальной энергии межмолекулярного взаимодействия. Так, для молей газа:
где — молярная теплоёмкость при постоянном объёме, которая предполагается не зависящей от температуры.
Адиабата
Уравнение адиабаты для газа Ван-дер-Ваальса:
где
Критические параметры
Критическими параметрами газа называются значения его макропараметров (давления, объёма и температуры) в критической точке, то есть в таком состоянии, когда жидкая и газообразная фазы вещества неразличимы. Найдём эти параметры для газа Ван-дер-Ваальса, для чего преобразуем уравнение состояния:
Мы получили кубическое уравнение относительно
В критической точке все три корня уравнения сливаются в один, поэтому предыдущее уравнение эквивалентно следующему:
Приравняв коэффициенты при соответствующих степенях , получим равенства:
Из них вычислим значения критических параметров
и критического коэффициента:
Приведённые параметры
Приведённые параметры определяются как отношения
Если подставить в уравнение Ван-дер-Ваальса получится приведённое уравнение состояния (для моль).
Если вещества обладают двумя одинаковыми приведёнными параметрами из трёх, то и третьи приведённые параметры у них совпадают.
Недостатки уравнения Ван-дер-Ваальса
Уравнение Ван-дер-Ваальса более точно описывает поведение реальных газов, чем уравнение состояния идеального газа, но вместе с тем не является абсолютно адекватной моделью. Его недостатки [8]:
- 1. Для реальных веществ
- 2. Для реальных веществ (скорее, ).
- 3. Уравнение Ван-дер-Ваальса расходится с экспериментом в области двухфазных состояний.
Константы Ван-дер-Ваальса для некоторых газов
Константы Ван-дер-Ваальса[9]
Вещество |
a, Па·м6·моль2 |
|
Азот N2 |
0,1370 |
38,7
|
Аммиак NH3 |
0,4225 |
37,1
|
Аргон Ar |
0,1355 |
32,0
|
Ацетилен C2H2 |
0,4516 |
52,2
|
Бром Br2 |
0,975 |
59,1
|
Бромоводород HBr |
0,4500 |
44,2
|
Бутан C4H10 |
1,389 |
116,4
|
Водород H2 |
0,02452 |
26,5
|
Вода H2O |
0,5537 |
30,5
|
Гексафторид серы SF6 |
0,7857 |
87,9
|
Гелий He |
0,00346 |
23,8
|
Гидразин N2H4 |
0,846 |
46,2
|
Кислород O2 |
0,1382 |
31,9
|
Криптон Kr |
0,5193 |
10,6
|
Ксенон Xe |
0,4192 |
51,6
|
Метан CH4 |
0,2303 |
43,1
|
Неон Ne |
0,0208 |
16,7
|
Озон O3 |
0,3570 |
48,7
|
Окись углерода CO |
0,1472 |
39,5
|
Пропан C3H8 |
0,939 |
90,5
|
Сернистый ангидрид SO2 |
0,6865 |
56,8
|
Сероводород H2S |
0,4544 |
43,4
|
Углекислый газ CO2 |
0,3658 |
42,9
|
Фтор F2 |
0,1171 |
29,0
|
Фтороводород HF |
0,9565 |
73,9
|
Хлор Cl2 |
0,6343 |
54,2
|
Хлороводород HCl |
0,3700 |
40,6
|
Циановодород HCN |
1,129 |
88,1
|
Этан C2H6 |
0,5580 |
65,1
|
Этилен C2H4 |
0,4612 |
58,2
|
См. также
Примечания
Комментарии
- В большинстве современных словарей, руководств и энциклопедий название уравнения приводится в виде «уравнение Ван-дер-Ваальса»[1][2][3][4][5]. Вместе с тем в Большой российской энциклопедии уравнение называется «уравнение Ван дер Ваальса»[6].
Источники
- Русский орфографический словарь: около 200 000 слов / Российская академия наук. Институт русского языка им. В. В. Виноградова / Под. ред. В. В. Лопатина, О. Е. Ивановой. — 4-е изд., испр. и доп. — М.: АСТ-Пресс Книга, 2013. — С. 68. — 896 с. — (Фундаментальные словари русского языка). — ISBN 978-5-462-01272-3.
-
-
-
-
-
- Матвеев, 1981.
- Матвеев, 1981, с. 245.
-
Литература
|
|