Меню
Главная
Случайная статья
Настройки
|
Теорема Коши в теории групп гласит:
Она тесно связана с теоремой Лагранжа, в силу которой порядок любой конечной группы G делится на порядок любой её подгруппы. В силу теоремы Коши для любого простого делителя
Обобщением теоремы Коши является первая теорема Силова, в соответствии с которой, если
Содержание
Доказательство
Эту теорему часто доказывают с помощью индукции и применения классов сопряжённости, но для абелевых групп аналогичное утверждение доказать намного проще. В доказательстве также может применяться действие группы.[1]
Вариант 1
Сначала докажем эту теорему в частном случае, когда группа
Если G абелева, то рассмотрим любой нетождественный элемент a и порождённую им циклическую подгруппу H. Если p делит |H|, то a|H|/p является искомым элементом порядка p. Иначе p делит не порядок |H|, а порядок [G:H] факторгруппы G/H. Тогда по индуктивному предположению факторгруппа содержит элемент порядка p. Им является один из классов xH, где x лежит в G. Если он имеет порядок m в группе G, то : благодаря тому, что в группе G xm = e, (xH)m = eH в факторгруппе G/H. Поэтому p делит m; аналогично xm/p окажется элементом порядка p в группе G, что заканчивает доказательство в абелевом случае.
В общем случае пусть группа Z является центром группы G. Тогда Z окажется абелевой. Если её порядок кратен p,то она, как мы уже видели, содержит элемент порядка p. Значит, этот элемент имеет порядок p и в группе G. Иначе p не делит Z. Так как p делит |G|, а G разбивается на Z и остальные классы сопряжённости, один из этих классов содержит элемент a, размер чьего класса не делится на p. Но легко показать, что его размер равен [G : CG(a)] и не кратен p. Поэтому p делит порядок не совпадающего с группой G централизатора CG(a) элемента a в группе G. Но по индуктивному предположению в централизаторе лежит искомый элемент порядка p, что и требовалось доказать.
Вариант 2
В этом варианте мы воспользуемся тем фактом, что действие циклической группы простого порядка p порождает только орбиты размеров 1 и p, что сразу следует из теоремы о стабилизаторах орбит.
Подействуем нашей группой на множество решений уравнения
т.е. на множество последовательностей из p элементов группы G, чьё произведение равно 1. Такая последовательность однозначно задаётся всеми элементами, кроме последнего, который обратен произведению остальных. Также понятно, что эти p 1 элементов можно выбирать произвольным способом, и в множестве X имеется |G|p1 элементов, и их количество кратно p.
Теперь заметим, что в группе ab = e, если и только если ba = e. Поэтому, если , то . Значит, циклические перестановки компонентов элемента множества X снова породят элементы X. Это позволяет задать действие циклической группы Cp порядка p на множестве X с помощью перестановки компонентов. Иными словами, порождающий группу Cp элемент переводит
- .
Очевидно, при таком действии орбиты в X имеют размеры 1 или p. Орбита имеет размер 1, если и только если её единственный элемент имеет вид и . Так как количество элементов X равно сумме количеств элементов в орбитах, количество элементов , для которых , кратно p. Так как одним из них является единичный элемент, всего существует хотя бы элементов, хотя бы p 1 из которых не равен единичному, а имеет порядок p. Теорема доказана.
Применения
Теорема Коши позволяет сразу установить то, какие группы могут быть конечными р-группами, где p — простое число. Именно, конечная группа G является p-группой (т.е. порядки всех элементов — точные степени p), если и только если порядок группы сам является степенью p. Хотя абелев случай также можно применить, чтобы доказать по индукции первую теорему Силова, [2] так же, как в первом доказательстве, существуют и доказательства, в которых этот случай разбирается отдельно.
Пример
Абелева простая группа может быть только циклической простого порядка. Действительно, в любой такой группе G все её подгруппы нормальны. Значит, если она проста, то все её нормальные подгруппы — либо единичная, либо она сама. если |G| = 1, то G сама является единичной. Иначе в ней есть неединичный элемент a G, и циклическая группа является неединичной подгруппой G. Значит, Пусть теперь порядок группы равен n. Если он бесконечен, то
- что невозможно.
Значит, n конечно. Если n составное, то оно кратно простому q, меньшему n. Но тогда существует подгруппа H порядка q, что противоречит условию. Значит, n просто.
Примечания
- McKay, 1959.
- Jacobson, 2009, p. 80.
Литература- Cauchy, Augustin-Louis (1845), Mmoire sur les arrangements que l'on peut former avec des lettres donnes, et sur les permutations ou substitutions l'aide desquelles on passe d'un arrangement un autre, Exercises d'analyse et de physique mathmatique, 3, Paris: 151–252
- Cauchy, Augustin-Louis (1932), Oeuvres compltes (PDF), second series, vol. 13 (reprinted ed.), Paris: Gauthier-Villars, pp. 171–282
- Jacobson, Nathan (2009) [1985], Basic Algebra, Dover Books on Mathematics, vol. I (Second ed.), Dover Publications, p. 80, ISBN 978-0-486-47189-1
- McKay, James H. (1959), Another proof of Cauchy's group theorem, American Mathematical Monthly, 66: 119, doi:10.2307/2310010, MR 0098777, Zbl 0082.02601
|
|