Меню

Главная
Случайная статья
Настройки
Вариационное исчисление
Материал из https://ru.wikipedia.org

Вариационное исчисление — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.

Методы вариационного исчисления широко применяются в различных областях математики. Например, в дифференциальной геометрии с их помощью ищут геодезические линии и минимальные поверхности. В физике вариационный метод — один из мощнейших инструментов получения уравнений движения (см. например Принцип наименьшего действия), как для дискретных, так и для распределённых систем, в том числе и для физических полей. Методы вариационного исчисления применимы и в статике (см. Вариационные принципы).

Содержание

Термины и определения

Важнейшими понятиями вариационного исчисления являются следующие:
  • вариация (первая вариация),
  • вариационная производная (первая вариационная производная),
  • кроме первой вариации и первой вариационной производной, рассматриваются и вариации и вариационные производные второго и высших порядков.


Никак не связана с вариационным вычислением совпадающая по названию вариация функции в анализе.

Термин варьирование (варьировать) — применяется в вариационном исчислении для обозначения нахождения вариации или вариационной производной (это аналог термина дифференцирование для случая бесконечномерного аргумента, являющегося предметом вариационного исчисления). Также нередко для краткости (особенно в приложениях) термин варьирование применяется для обозначения решения вариационной задачи, сводимой к нахождению вариационной производной и приравнивания её нулю.

Вариационная задача означает, как правило, нахождение функции (в рамках вариационного исчисления — уравнения на функцию), удовлетворяющей условию стационарности некоторого заданного функционала, то есть такой функции, (бесконечно малые) возмущения которой не вызывают изменения функционала по крайней мере в первом порядке малости. Также вариационной задачей называют тесно связанную с этим задачу нахождения функции (уравнения на функцию), на которой данный функционал достигает локального экстремума (во многом эта задача сводится к первой, иногда практически полностью). Обычно при таком употреблении терминов подразумевается, что задача решается методами вариационного исчисления.

Типичными примерами вариационной задачи являются изопериметрические задачи в геометрии и механике; в физике — задача нахождения уравнений поля из заданного вида действия для этого поля.

История

Ещё в античные времена появились первые вариационные проблемы, относящиеся к категории изопериметрических задач — например, задача Дидоны. Древнегреческим математикам уже было известно[1]:
  1. Из всех фигур с заданным периметром наибольшую площадь имеет круг.
  2. Из всех многоугольников с заданным числом сторон и заданным периметром наибольшую площадь имеет правильный многоугольник.
  3. Из всех тел с заданной площадью поверхности наибольший объём имеет шар. Аналогичную задачу для шаровых сегментов решил Архимед, а Зенодор во II веке до н. э. написал книгу «Об изопериметрических фигурах» (сохранились обширные цитаты из неё в трудах других авторов).


Первый вариационный принцип сформулировал для траекторий отражённых световых лучей Герон Александрийский в работе «Катоптрика» (I век н. э.)[2].

В средневековой Европе изопериметрическими задачами занимались И. Сакробоско (XIII век) и Т. Брадвардин (XIV век). После разработки анализа появились новые типы вариационных задач, в основном механического характера. Ньютон в «Математических началах натуральной философии» (1687) решает задачу: найти форму тела вращения, обеспечивающую наименьшее сопротивление при движении в газе или жидкости (при заданных размерах). Важной исторической задачей, давшей толчок к развитию современного варианта вариационного исчисления, стала задача о брахистохроне (1696). Её быстрое решение сразу несколькими математиками показало огромные возможности новых методов. Среди других задач стоит отметить определение формы цепной линии (то есть формы равновесия тяжёлой однородной нити, 1690 год). Общих методов решения вариационных задач в этот период ещё не существовало, каждая задача решалась с помощью остроумных (и не всегда безупречных) геометрических рассуждений.

Пьер Ферма сформулировал основной принцип геометрической оптики, в силу которого свет в неоднородной среде выбирает путь, занимающий наименьшее время. В 1746 году Мопертюи обобщил это правило, введя в науку первый принцип наименьшего действия.

Решающий вклад в развитие вариационного исчисления внесли Леонард Эйлер и Жозеф Лагранж. Эйлеру принадлежит первое систематическое изложение вариационного исчисления и сам термин (1766 год). Лагранж независимо получил (с 1755 года) многие основополагающие результаты и ввёл понятие вариации.

На этом этапе были выведены уравнения Эйлера — Лагранжа. Они представляют собой необходимое условие экстремума, ставшее аналитическим фундаментом вариационных методов. Вскоре, однако, выяснилось, что решения этих уравнений не во всех случаях дают реальный экстремум, и встала задача найти достаточные условия, гарантирующие экстремум. Первое глубокое исследование (второй вариации) предпринял Лежандр, однако Лагранж обнаружил в его работе ошибку. Результаты Лежандра уточнил и дополнил Якоби (1837), затем его ученик Гессе (1857) и позднее Вейерштрасс. Сейчас эти достаточные условия называются уравнениями Якоби[3].

Неформальное обсуждение

Содержанием вариационного исчисления является обобщение понятия дифференциала и производной функции конечномерного векторного аргумента на случай функционала — функции, областью определения которой служит некое множество или пространство функций, а значения лежат в множестве вещественных, либо комплексных чисел.
  • Всюду ниже в этом параграфе подразумевается, что функции и функционалы обладают необходимой гладкостью, то есть вопрос существования тех или иных производных специально не рассматривается, тем более что во многих конкретных задачах этот вопрос не имеет практического значения (нужная гладкость заведомо есть).


Функционал ставит в соответствие каждой конкретной функции из его области определения — определённое число.

Нетрудно написать для функционала аналоги дифференциала и производной по направлению.

Вариация

Аналогом дифференциала (первого дифференциала) является в вариационном исчислении вариация (первая вариация):


(как и в случае дифференциала имеется в виду линейная часть этого приращения, а выражаясь традиционным образом — выбирается бесконечно малой, и при вычислении разности отбрасываются бесконечно малые высших порядков). При этом  — играющее роль дифференциала или малого приращения независимой переменной — называется вариацией .

Как видим, сама в свою очередь является функционалом, так как она, вообще говоря, различна для разных (также и для разных ).

Таким образом, это — в применении к функционалам — прямой аналог дифференциала функции конечномерного (в том числе одномерного) аргумента:


— точно так же понимаемого как линейная часть приращения функции при бесконечно малом приращении аргумента (или линейный член при разложении по степеням вблизи точки ).
  • Для функционала вещественной функции вещественного аргумента — для любой и будет верным .
  • Для функционала вещественной функции вещественного аргумента — для любой и будет верным .
  • Для функционала вещественной функции вещественного аргумента — для любой и будет верным .


Производная по направлению

(Производная Гато) Производной функционала в точке по направлению , очевидно, будет


Этого в принципе уже достаточно для решения типичной вариационной задачи — нахождения «стационарных точек», то есть таких функций , для которых первая вариация или производная по направлению обращается в ноль для любой бесконечно малой или любой конечной . Именно эти «точки» в пространстве функций — то есть именно такие функции — являются кандидатами в экстремали (проверку того, действительно ли они являются экстремалями, то есть достигается ли на них локальный экстремум, надо делать отдельно, как и в случае функций конечномерного аргумента; интересно, что во многих задачах физики важнее найти не экстремали, а именно стационарные точки). В некоторых источниках встречается терминология, где экстремалями называются все стационарные точки функционала, а тип экстремали затем выясняется. Анализ стационарных точек основан на исследовании знака второй производной по направлению.
Downgrade Counter