Меню

Главная
Случайная статья
Настройки
Группа Лоренца
Материал из https://ru.wikipedia.org

Группа Лоренцагруппа преобразований Лоренца пространства Минковского, сохраняющих начало координат (то есть являющихся линейными операторами)[1].

Группа Лоренца состоит из однородных линейных преобразований координат четырёхмерного пространства-времени:


которые оставляют инвариантной квадратичную форму с сигнатурой (1, 3), которая является математическим выражением четырёхмерного интервала [2]. В частности, группа Лоренца включает пространственные повороты в трёх плоскостях , лоренцевы преобразования , отражения пространственных осей : и все их произведения.

Группа Лоренца — частный случай неопределённой ортогональной группы[3], и поэтому обозначается (либо , что соответствует квадратичной форме с противоположными знаками и переставленными координатами), или , а также [2].

Специальная группа Лоренца или собственная группа Лоренца  — подгруппа преобразований, определитель матрицы которых равен 1 (в общем случае он равен ±1).

Ортохронная группа Лоренца (также обозначается , и она может быть отождествлена с проективной (неопределённой) ортогональной группой[англ.] ), специальная (или собственная) ортохронная группа Лоренца  — аналогично, но все преобразования сохраняют направление будущего во времени (знак координаты ). Группа , единственная из четырёх, является связной и изоморфна группе Мёбиуса.

Иногда условие ортохронности включают в определение группы Лоренца, в этом случае группа, включающая преобразования, которые меняют направление времени, может называться общей группой Лоренца[4][5]. Иногда также под группой Лоренца подразумевают собственную ортохронную группу Лоренца[6].

Содержание

Представления группы Лоренца
Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
Трансляции времени Однородность
времени
…энергии
C, P, CP и T-симметрии Изотропность
времени
…чётности
Трансляции пространства Однородность
пространства
…импульса
Вращения пространства Изотропность
пространства
…момента
импульса
Группа Лоренца (бусты) Относительность
лоренц-ковариантность
…движения
центра масс
~ Калибровочное
преобразование
Калибровочная
инвариантность
…заряда


Пусть физическая величина (например, четырёхмерный вектор энергии-импульса или потенциал электромагнитного поля) описывается многокомпонентной функцией координат . При переходе из одной инерциальной системы отсчёта к другой компоненты физической величины линейно преобразуются друг через друга: . При этом матрица имеет ранг , равный числу компонент величины . Каждому элементу группы Лоренца соответствует линейное преобразование , единичному элементу группы Лоренца (тождественному преобразованию) соответствует единичное преобразование , а произведению двух элементов группы Лоренца и соответствует произведение двух преобразований . Систему матриц с перечисленными свойствами называют линейным представлением группы Лоренца.[7]

Представления группы Лоренца в комплексных линейных пространствах очень важны для физики, так как связаны с понятием спина. Все неприводимые представления специальной ортохронной группы Лоренца можно построить при помощи спиноров.

Примечания
  1. Полупрямое произведение группы Лоренца и группы параллельных переносов пространства Минковского по историческим причинам называется группой Пуанкаре. С другой стороны, группа Лоренца содержит в качестве своей подгруппы группу вращений 3-мерного пространства.
  2. 1 2 С. И. Азаков, В. П. Павлов. Лоренца группа // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия (т. 1—2); Большая Российская энциклопедия (т. 3—5), 1988—1999. — ISBN 5-85270-034-7.
  3. Brian C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. — Springer, 2003. — P. 7.
  4. Гельфанд, Минлос, Шапиро, 1958, с. 165—166.
  5. Ширков, 1980, с. 146.
  6. Naber, 2012, p. 19.
  7. Ширков, 1980, с. 147.


Литература
  • Ширков Д. В. Физика микромира. — М.: Советская энциклопедия, 1980. — 527 с.


См. также
Downgrade Counter