Меню

Главная
Случайная статья
Настройки
Тензор
Материал из https://ru.wikipedia.org

Тензор (от лат. tensus, «напряжённый») — применяемый в математике и физике математический объект линейной алгебры, заданный на векторном пространстве конечной размерности. В физике в качестве векторного пространства обычно выступает физическое трёхмерное пространство или четырёхмерное пространство-время, а компонентами тензора являются координаты (проекции) взаимосвязанных физических величин. Использование тензоров в физике позволяет глубже понять физические законы и уравнения, упростить их запись за счёт сведения многих связанных физических величин в один тензор, а также записывать уравнения в форме, не зависящей от выбранной системы отсчёта.

Тензор ранга (валентности) , заданный на векторном пространстве размерности , ­в каждом конкретном его базисе можно представить как упорядоченный набор компонент, значения которых в общем случае (кроме ранга 0) зависят от базиса определенным образом. При этом сам тензор, как алгебраический и геометрический объект от базиса не зависит — одному и тому же тензору соответствуют разные наборы «координат» в разных базисах. Компоненты тензора при фиксированном базисе можно структурировать в виде -мерной таблицы . При ранге 0 таблица представляет собой одно число (скаляр), при ранге 1 — упорядоченный набор (вектор-столбец или вектор-строка), при ранге 2 — квадратную матрицу, при ранге 3 — трёхмерный куб и т. д. В общем случае визуальное представление для больших рангов затруднительно.

«Тип» тензора определяется не просто общим рангом, а парой натуральных чисел , где контравариантный, а ковариантный ранг (и говорят раз контравариантный и раз ковариантный тензор), сумма которых и равна общему рангу: . Тип тензора определяет характер изменения компонент при смене базиса пространства.

По существу тензоры типа — это векторы пространства размерности , обозначаемого или , полилинейно связанного с , а компоненты тензора - это координаты этого вектора в в базисе, «привязанном» к базису пространства . Именно полилинейная связь между и позволяет идентифицировать векторы из как тензоры на , так как при замене базиса в также меняется базис в и координаты тензора как вектора этого пространства. Поэтому говорят о координатном представлении тензора в базисе пространства .

Тензоры типа – это скаляры поля, над которым задано пространство . Скаляры не изменяются (инвариантны) при смене базиса. Тензоры типа — это векторы пространства , линейные функционалы (ковекторы) на , образующие сопряжённое пространство той же размерности. Тензоры 2 ранга — это тензоры типа (билинейные формы), (линейные операторы или аффиноры[1]) и (диады).

Компоненты тензора типа записываются с помощью верхних (контравариантных) и нижних (ковариантных) индексов: . Например, векторы в тензорном обозначении записываются с одним верхним индексом , линейные операторы — с нижним и верхним индексами: , билинейные формы (дважды ковариантные тензоры) — с двумя нижними индексами . Тензор типа (например, тензор кривизны Римана) будет записан как .

В приложениях часто применяются тензорные поля, которые сопоставляют различным точкам пространства разные тензоры (например, тензор напряжений внутри объекта). Тем не менее, часто их упрощённо тоже называют тензорами.

Тензоры были популяризованы в 1900 году Туллио Леви-Чивита и Грегорио Риччи-Курбастро, которые продолжили более ранние работы Бернхарда Римана и Элвина Бруно Кристоффеля. Слово «тензор» придумал немецкий физик В. Фогт в 1898 году[2]. Понятие возникло в связи с вопросом, какие напряжения возникают в неровном (произвольной формы) теле, к которому прикладывается линейная сила; ответ потребовал введения сложного математического объекта для каждой рассматриваемой точки неровного тела — некоего набора величин, не меняющихся при изменении точки отсчёта.

Содержание

Предварительные сведения

Правило Эйнштейна

Здесь и далее по тексту статьи в основном будет использоваться общепринятое соглашение — так называемое правило Эйнштейна, в соответствии с которым, если в записи присутствуют верхний и нижний индексы, обозначенные одинаковой буквой (так называемый «немой» индекс), то по нему предполагается суммирование. Например, запись означает то же, что и . Это позволяет упростить записи формул за счёт того, что не указываются знаки суммирования. По индексам, обозначенным разными буквами, суммирования не предполагается. Немой индекс в результате «исчезает», а остальные индексы остаются, например: или . См. также подраздел настоящей статьи, посвящённый операции свёртки.

Контравариантность векторов

Пусть набор векторов является базисом в векторном пространстве . Тогда любой вектор этого пространства в данном базисе представляется как линейная комбинация базисных векторов: . Набор (упорядоченный) чисел (вектор-столбец) называют координатами или компонентами вектора в данном базисе или координатным представлением вектора.

Рассмотрим другой набор векторов , также являющийся базисом. Каждый из векторов нового базиса может быть представлен в «старом» базисе (как и любой вектор): , то есть координатами . Соответственно, матрица , столбцы которой представляют координаты нового базиса в старом — это матрица преобразования старого базиса в новый. Обратная матрица позволяет получить старый базис из нового. Кроме этого, именно с помощью обратной матрицы можно получить координатное представление произвольного вектора в новом базисе. В самом деле, , то есть новые координаты (в новом базисе) равны (в матрично-векторной форме это записывается как ). То есть координаты вектора преобразовываются обратно базису. Это свойство преобразования координат называется контравариантность.

Ковариантность линейных функционалов

Если координаты какого-либо объекта будут преобразовываться как базис, то есть с помощью матрицы преобразования базиса, то это называется ковариантность. Примером ковариантного объекта являются так называемые ковекторы — линейные функционалы (линейные формы) на пространстве . В силу линейности множество всех таких функционалов также образует векторное пространство , называемое сопряжённым к и имеющее ту же размерность, что и . Таким образом, линейные функционалы (формы) — это векторы сопряжённого пространства. Ковекторами (ковариантными тензорами ранга 1) они становятся в силу привязки к основному пространству , а именно специфическим выбором базиса сопряжённого пространства, однозначно определяемого базисом пространства . В заданном базисе пространства произвольная линейная форма равна . Координаты вектора можно трактовать как тоже линейные функции, которые ставят в соответствие каждому вектору — его соответствующую координату: . Эти линейные функционалы являются базисом в сопряжённом пространстве и называются дуальным (или двойственным) базисом (к базису основного пространства). Соответственно, произвольная линейная форма представляется в виде: , то есть тоже как набор координат (они записываются как вектор-строка, в отличие от вектора-столбца координат векторов основного пространства).

В новом базисе имеем: , где  — координаты линейной формы в новом дуальном базисе . Они преобразуются с помощью той же матрицы перехода от старого базиса пространства к новому . Это можно пояснить и без формул: линейный функционал — вектор в пространстве , поэтому при смене базиса в нём, его координаты меняются обратно своему базису, но этот дуальный базис меняется в свою очередь обратно изменению базиса в пространстве (так как это координаты векторов по сути). В итоге координаты линейной функции преобразовываются так же, как и базис основного пространства. Поэтому они называются ковекторами по отношению к основному пространству.

Замечания
  1. В случае ортонормированных базисов обратная матрица преобразования базиса равна просто транспонированной: , поэтому , то есть, если координаты линейной формы записать не в виде вектор-строки, а в виде вектора-столбца, то правило преобразования координат линейной формы не будет отличаться от правила преобразования вектора. Таким образом, при переходах между ортонормированными базисами (повороты или изменения ориентации базиса) ковариантное преобразование не отличается от контравариантного.
  2. В пространствах с (псевдо)скалярным произведением пространство канонически изоморфно пространству , то есть их можно отождествить (каждый линейный функционал представляется в виде скалярного произведения фиксированного вектора на вектор-аргумент функции , то есть , соответственно, между a и


Примеры пересчёта координат при замене базиса

Рассмотрим некоторый вектор в некотором двумерном евклидовом пространстве (евклидова плоскость), который на рисунке справа изображён в виде направленной стрелки зелёного цвета. В некотором базисе (на рисунке он обозначен красным) на плоскости, состоящем из векторов и , этот вектор имеет координаты , то есть (сам вектор не зависит от выбора базиса и задаётся независимо от него).

Теперь введём новый базис , , получаемый из первого поворотом на в положительном направлении. Разложим векторы , , по базису , и обозначим через -ю координату вектора , тогда

Очевидно , . Соответственно, матрица перехода от базиса , к базису , имеет вид .

Поскольку , то старые координаты с новыми связаны как или в матричной форме , соответственно обратная зависимость координат в новом базисе от координат в старом выглядит в тензорной записи как , а в матричной как . Обратную к матрицу легко найти в данном случае: . Соответственно, координаты вектора в новом базисе равны



Видно, что, координаты вектора в новом базисе, действительно, отличаются от координат в старом базисе (что было видно уже по рисунку), при этом сам вектор , как элемент пространства, никак не зависит от выбора базиса (геометрически зелёная стрелка не изменилась никак).
Downgrade Counter