Меню

Главная
Случайная статья
Настройки
1 (число)
Материал из https://ru.wikipedia.org

1 (рус. один; церк.-слав. динъ, дина, дино, дьнъ, дьна[1], диница[2]) — наименьшее натуральное число[3][комм. 1], целое число между 0 и 2.

Содержание

Обозначение

В математике инков единица обозначалась в кипу в виде одного узла на свисающей нити. В кириллической записи чисел единица обозначалась буквой а (азъ). Арабскими цифрами единица записывается как «1»[3].

Свойства

Единица — единственное положительное число, которое равно своему обратному. Поэтому привело к одному из основных понятий в теории групп — нейтральному элементу, часто называемому просто единицей группы.

Для любого числа x:

Число 1 не может быть самостоятельно использовано как основа позиционной системы счисления, но существует унарная система счисления, которая основана на многократном суммировании единицы, обозначаемой единственной цифрой в унарной системе, и, соответственно, является непозиционной. Поскольку квадрат, куб и любая другая степень числа 1 равняется единице, логарифмы по основанию 1 от числа, не равного 1, не существуют. Логарифм числа 1 по основанию 1 также не определён, так как за его значение может быть принято любое число.

В настоящее время в математике принято не относить единицу ни к простым, ни к составным числам, так как это нарушает важную для теории чисел единственность разложения на простые множители. Последним из профессиональных математиков, кто рассматривал 1 как простое число, был Анри Лебег в 1899 году.

Число 1 — наименьшее натуральное число, большее нуля (является ли нуль натуральным числом — зависит от принятых соглашений). Иногда за определение 1 принимают утверждение «при умножении единицы на любое другое число в результате получается это же число», а натуральные числа определяют, исходя из определений единицы и операции сложения.

Единица также используется в тождестве Эйлера — математическом соотношении пяти констант математики — собственно единицы, нуля, e, и i:

.

Числом 1 также оказалась константа Лежандра. Изначально сам Лежандр высказал гипотезу о том, что она равна примерно 1,08366, но впоследствии Чебышёв, а затем Валле-Пуссен и Пинтц доказали элементарность этого числа, и константа Лежандра стала иметь лишь историческую ценность.

История

Ряд знаменитых учёных Древней Греции рассматривали каждое из натуральных чисел как собрание единиц; сама же единица числом не считалась[4]. В XVII веке Декарт и Ньютон приняли в своих трудах более современную точку зрения на сущность числа. Ньютон в трактате «Универсальная арифметика» писал[5]:

Под числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой за единицу.

В XX веке понятие числа окончательно отделилось от операции измерения и рассматривается как чисто математический объект, свойства которого задаются набором аксиом.

Вариации и обобщения

Единица — единственное положительное число, которое равно своему обратному. Поэтому обобщение этого свойства привело к одному из основных понятий в теории групп — понятию нейтрального элемента, который часто называют просто единицей группы.

Единица является автоморфным числом в любой позиционной системе счисления.

В представлении фон Неймана для натуральных чисел единица определяется как множество {0}. Это множество имеет кардинальность 1 и наследственный ранг 1. Такие множества с единственным элементом называются синглетонами.

См. также

Примечания

Комментарии
  1. Ноль традиционно в русских источниках не считается натуральным числом, но считается у французских и ряда других авторов


Источники
  1. один // Этимологический словарь русского языка = Russisches etymologisches Wrterbuch : в 4 т. / авт.-сост. М. Фасмер ; пер. с нем. и доп. чл.кор. АН СССР О. Н. Трубачёва, под ред. и с предисл. проф. Б. А. Ларина [т. I]. — Изд. 2-е, стер. — М. : Прогресс, 1986—1987.
  2. единый // Этимологический словарь русского языка = Russisches etymologisches Wrterbuch : в 4 т. / авт.-сост. М. Фасмер ; пер. с нем. и доп. чл.кор. АН СССР О. Н. Трубачёва, под ред. и с предисл. проф. Б. А. Ларина [т. I]. — Изд. 2-е, стер. — М. : Прогресс, 1986—1987.
  3. 1 2 БРЭ.
  4. Энциклопедический словарь юного математика, 1985.
  5. История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II. — С. 35.


Литература


Ссылки
Downgrade Counter