Меню

Главная
Случайная статья
Настройки
Математические обозначения
Материал из https://ru.wikipedia.org

Математические обозначения («язык математики») — графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем, применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор.

Отметим, что математические обозначения, как правило, применяются совместно с письменной формой какого-то из естественных языков.

Помимо фундаментальной и прикладной математики, математические обозначения имеют широкое применение в физике, а также (в неполном своём объёме) в инженерии, информатике, экономике, и других областях человеческой деятельности, в которых применяются математические модели. Различия между собственно математическим и прикладным стилем обозначений будут оговорены по ходу текста.

Содержание

Общие сведения

Система складывалась, наподобие естественных языков, исторически (см. история математических обозначений), и организована наподобие письменности естественных языков, заимствуя оттуда также многие символы (прежде всего, из латинского и греческого алфавитов). Символы, также как и в обычной письменности, изображаются контрастными линиями на равномерном фоне (чёрные на белой бумаге, светлые на тёмной доске, контрастные на мониторе и т. д.), и значение их определяется в первую очередь формой и взаимным расположением. Цвет во внимание не принимается и обычно не используется, но, при использовании букв, такие их характеристики как начертание и даже гарнитура, не влияющие на смысл в обычной письменности, в математических обозначениях могут играть смыслоразличающую роль.

Структура

Обыкновенные математические обозначения (в частности, так называемые математические формулы) пишутся в общем в строку слева направо, однако не обязательно составляют последовательную строку символов. Отдельные блоки символов могут располагаться в верхней или нижней половине строки, даже в случае, когда символы не перекрываются вертикалями. Также, некоторые части располагаются целиком выше или ниже строки. С грамматической же стороны почти любую «формулу» можно считать иерархически организованной структурой типа дерева.

Стандартизация

Математические обозначения представляют систему в смысле взаимосвязи своих компонент, но, в целом, не составляют формальную систему (в понимании самой математики). Они, в сколь-нибудь сложном случае, не могут быть даже разобраны программно. Как и любой естественный язык, «язык математики» полон несогласованных обозначений, омографов, различных (в среде своих носителей) трактовок того, что считать правильным и т. п. Нет даже сколь-нибудь обозримого алфавита математических символов, и в частности оттого, что не всегда однозначно решается вопрос, считать ли два обозначения разными символами или же разными написаниями одного символа.

Некоторая часть математических обозначений (в основном, связанная с измерениями) стандартизована в ISO 31-11, однако в целом стандартизация обозначений скорее отсутствует.

Элементы математических обозначений

Числа

Для записи целых чисел как правило применяется десятичная система счисления с арабскими цифрами. Подряд записанная строка цифр интерпретируется как число; возможные исключения оговорены ниже.

При необходимости применить систему счисления с основанием, меньшим десяти, основание записывается в нижний индекс: 200038. Системы счисления с основаниями, большими десяти, в общепринятой математической записи не применяются (хотя, разумеется, изучаются самой наукой), поскольку для них не хватает цифр. В связи с развитием информатики, стала актуальной шестнадцатеричная система счисления, в которой цифры от 10 до 15 обозначаются первыми шестью латинскими буквами от A до F. Для обозначения таких чисел в информатике используется несколько разных подходов, но в математику они не перенесены.

Десятичная дробь употребляется для обозначения вещественных чисел в прикладных областях (означая, как правило, приближённое значение, что особо не оговаривается). В математике, если нецелое рациональное число оказалось кратным отрицательной степени десяти, то оно также может быть записано десятичной дробью. Вид разделителя целой и дробной частей (точка или запятая) зависит от традиции, принятой в используемом языке.

В приложениях очень большие или очень малые (по абсолютной величине) часто записываются в экспоненциальной записи: . Иногда (особенно вычислители) вместо «умножить на десять в степени» пишут букву «E», то есть , но в большинстве областей (включая «чистую» математику) такая запись не употребляется.

Математика же стремится более к точности, чем к лёгкости обозначений, и поэтому нужное число по мере возможности будет записано в виде выражения, нежели приближённо.

Атомарные символы

Из буквенных символов употребляются, в основном, латинские и греческие буквы. Регистр важен. Латинские буквы «I» (прописное «и») и «l» (строчное «эл») в прямом начертании пишутся с засечками, дабы не путались с вертикальной чертой «|» и друг с другом, и вообще стремятся использовать начертания, как можно меньше похожие на другие используемые символы. Готические буквы считаются отдельными буквами. В принципе, никаких ограничений на используемые алфавиты нет.

Также можно считать атомарными слова, записанные латинскими буквами, — общепринятые обозначения некоторых функций и операторов, например «log» (на письме они не разбиваются пробелами, не переносятся и т. д.); см. список математических аббревиатур. Такие слова записываются прямым (не курсивным) шрифтом строчными буквами (за исключением, возможно, первой буквы, которая может быть прописной). Существуют также диграфы, состоящие из нелатинских символов.

Не стоит использовать символы вроде «» (английское «ай» с точками), так как подобные символы могут быть легко перепутаны с производными (см. ниже).

Надстрочные и подстрочные знаки
Downgrade Counter