Меню

Главная
Случайная статья
Настройки
Математическая формула
Материал из https://ru.wikipedia.org

Математическая формула (от лат. formula — уменьшительное от forma — «образ», «вид») в математике, а также физике и других естественных науках — символическая запись высказывания (которое выражает логическое суждение[1]), либо формы высказывания[2]. Формула, наряду с термами, является разновидностью выражения формализованного языка.

Содержание

Основные виды (численных) формул

Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение. Такое суждение может утверждать что-то о переменных, а может — о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:
  • Формула должна сообщить, как искать значения переменной (уравнения и т. п.);
  • Формула (записываемая как «искомое = выражение») определяет величину через свои параметры (аналогично присваиванию в программировании и иногда записывается через диграф «:=» как в языке Pascal, но в принципе может считаться вырожденным частным случаем уравнения);
  • Формула является собственно логическим утверждением: тождеством (например, аксиомой), утверждением теоремы и т. п.


Уравнения

Уравнение — формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства. Однако важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, является уравнением, где x — переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения: в данном случае таковыми являются два числа 1 и 1. Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл — для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y, z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x. В данном элементарном случае, речь может идти скорее об определении a через x: .

Тождества

Тождество — суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций, например тождество утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце, которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например .

Приближённые равенства

Например:  — приближённое равенство при малых ;

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши — Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.
Downgrade Counter