Меню
Главная
Случайная статья
Настройки
|
Многообразие Уайтхеда — определённый пример открытого трёхмерного многообразия, являющегося стягиваемым, но не гомеоморфным .
Пример был найден Генри Уайтхедом в 1935 году при попытке решить гипотезу Пуанкаре.
В одномерном и двумерном случаях подобных примеров не существует.
Содержание
Построение
Для построения в трёхмерной сфере выбирается незаузленное полноторие , далее — второе полноторие в так, что и трубчатая окрестность меридиана образуют
утолщение зацепления Уайтхеда.
При этом можно стянуть в дополнении меридиана и меридиан можно стянуть в дополнении .
Далее строится полноторие , вложенное в тем же способом, как и для ; это построение можно продолжить до бесконечности, получив последовательность вложенных полнотрий:
Континуум Уайтхеда определяется как пересечение построенных полнотрий:
- .
Дополнение и есть многообразие Уайтхеда.
Свойства- Многообразие Уайтхеда, , не гомеоморфно , но произведение гомеоморфно .
- Многообразие Уайтхеда не односвязно на бесконечности. То есть содержит компактное множество такое, что для любого другого компактного множества дополнение не односвязно.
См. также
Литература
|
|