Меню
Главная
Случайная статья
Настройки
|
Ортогональная матрица — квадратная матрица с вещественными элементами, результат умножения которой на транспонированную матрицу равен единичной матрице[1]:
или, что эквивалентно, её обратная матрица (которая обязательно существует) равна транспонированной матрице:
Комплексным аналогом ортогональной матрицы является унитарная матрица.
Ортогональная матрица с определителем называется специальной ортогональной.
Содержание
Свойства- Ортогональная матрица является унитарной () и, следовательно, нормальной ().
- Столбцы и строки ортогональной матрицы образуют системы ортонормированных векторов, то есть:
- и
- где , — порядок матрицы, а — символ Кронекера.
Другими словами, скалярное произведение строки на саму себя равно 1, а на любую другую строку — 0. Это же справедливо и для столбцов.
- Определитель ортогональной матрицы равен , что следует из свойств определителей:
- Обратное неверно; матрица с определителем может быть неортогональной. Так, матрица неортогональна, хотя её определитель равен 1.
- и
Примеры- — единичная матрица.
- — матрица, отражающая плоскость относительно оси Х.
- — матрица поворота плоскости на угол .
- — пример матрицы поворота.
- — пример перестановочной матрицы.
- — матрица поворота, выраженная через углы Эйлера.
См. также
Примечания
- Ильин В. А., Позняк Э. Г. Линейная алгебра. — 4-е изд. — М: Наука, 1999. — стр. 158. — ISBN 5-02-015235-8.
|
|