Меню

Главная
Случайная статья
Настройки
Произведение Кронекера
Материал из https://ru.wikipedia.org

Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.

Произведение Кронекера не следует путать с обычным умножением матриц. Операция названа в честь немецкого математика Леопольда Кронекера.

Содержание

Определение

Если A — матрица размера mn, B — матрица размера pq, тогда произведение Кронекера есть блочная матрица размера mpnq


В развёрнутом виде



Если A и B представляют собой линейные преобразования V1 W1 и V2 W2, соответственно, то A B представляет собой тензорное произведение двух отображений, V1 V2 W1 W2.

Пример
.


Билинейность, ассоциативность и некоммутативность
где A, B и C есть матрицы, а k — скаляр.


Если A и B квадратные матрицы, тогда A B и B A являются перестановочно подобными, то есть, P = QT.

Транспонирование

Операции транспонирования и эрмитова сопряжения можно переставлять с произведением Кронекера:


Смешанное произведение
  • Если A, B, C и D являются матрицами такого размера, что существуют произведения AC и BD, тогда
  • A B является обратимой тогда и только тогда, когда A и B являются обратимыми, и тогда
, где - произведение Адамара
, где - единичная матрица.


Сумма и экспонента Кронекера
  • Пусть A — матрица размера nn, B — матрица размера mm и  — единичная матрица размера kk. Тогда можно определить сумму Кронекера как
  • Также справедливо


Спектр, след и определитель
  • Если A и B квадратные матрицы размера n и q соответственно. Если 1, …, n — собственные значения матрицы A и 1, …, q собственные значения матрицы B. Тогда собственными значениями A B являются


Сингулярное разложение и ранг


Ненулевые сингулярные значения матрицы B:


Тогда произведение Кронекера A B имеет rArB ненулевых сингулярных значений
  • Ранг матрицы равен количеству ненулевых сингулярных значений,


История

Произведение Кронекера названо в честь Леопольда Кронекера, несмотря даже на то, что существует мало свидетельств о том, что он был первым, кто определил и использовал эту операцию. В прошлом произведение Кронекера иногда называли матрицей Зефусса.

Блочные версии произведения Кронекера

В случае блочных матриц могут использоваться матричные операции, связанные c произведением Кронекера и отличающиеся порядком соответствующего перемножения блоков. Таковыми являются произведения Трейси – Сингха (англ. Tracy–Singh product) и произведение Хатри — Рао.

Произведение Трейси-Сингха

Указанная операция перемножения блочных матриц заключается в том, что каждый блок левой матрицы умножается последовательно на блоки правой матрицы. При этом формируемая структура результирующей матрицы отличается от характерной для произведения Кронекера. Произведение Трейси – Сингха определяется как[1][2]


Например:


Произведение Хатри-Рао

Данный вариант умножения определён для матриц с одинаковой блочной структурой. Он предусматривает, что операция кронекеровского произведения выполняется поблочно, в пределах одноимённых матричных блоков по аналогии с поэлементным произведением Адамара, только при этом в качестве элементов фигурируют блоки матриц, а для умножения блоков используется кронекеровское произведение.

Примечания
  1. Tracy, D. S.; Singh, R. P. (1972). A New Matrix Product and Its Applications in Matrix Differentiation. Statistica Neerlandica. 26 (4): 143–157. doi:10.1111/j.1467-9574.1972.tb00199.x.


Литература
  • Хорн Р. Матричный анализ: Пер. с англ. / Р. Хорн, Ч. Джонсон. – М.: Мир, 1989.– 655 с.
Downgrade Counter