Меню

Главная
Случайная статья
Настройки
Распределение Вейбулла
Материал из https://ru.wikipedia.org

Распределение Вейбулла в теории вероятностей — двухпараметрическое семейство абсолютно непрерывных распределений. Названо в честь Валодди Вейбулла, детально охарактеризовавшего его в 1951, хотя впервые его определил Фреше в 1927, а применено оно было ещё в 1933 для описания распределения размеров частиц.

Содержание

Определение

Пусть распределение случайной величины задаётся плотностью , имеющей вид:


Тогда говорят, что имеет распределение Вейбулла. Пишут: .

Если величину X принять за наработку до отказа, тогда получается распределение, в котором интенсивность отказов пропорциональна времени. Тогда:


В материаловедении коэффициент

Свойства

Функция плотности

Вид функции плотности распределения Вейбулла сильно зависит от значения k. Для 0 <

Функция распределения

Функция распределения Вейбулла:


при x 0, и F(x; k; ) = 0 при x < 0

Квантиль распределения Вейбулла:


при 0 p < 1.

Интенсивность отказов h:


Моменты

Производящая функция моментов логарифма случайной величины, имеющей распределение Вейбулла


где  — это гамма-функция. Аналогично, Характеристическая функция логарифма X задаётся


Моменты случайной величины , имеющей распределение Вейбулла имеют вид
, где  — гамма-функция,


откуда
,
.


Коэффициент асимметрии задаётся функцией


Коэффициент эксцесса


где , так же может быть записан:


Производящая функция моментов

Существует множество выражений для производящей функции моментов самой


Так же можно работать непосредственно с интегралом


Если коэффициент k предполагается рациональным числом, выраженным k = p/q, где p и q целые, то интеграл может быть вычислен аналитически.[1] С заменой t на -t, получается


где G — это G-функция Мейера.

Информационная энтропия

Информационная энтропия задаётся таким образом


где  — это Постоянная Эйлера — Маскерони.

Оценка коэффициентов

Оценка максимального правдоподобия для коэффициента


Для


Условная функция надёжности Вейбулла

Для 2-х параметрического распределения Вейбулла функция имеет вид:
или


Для 3-х параметрического:


Она называется условной, потому что показывает вероятность того, что объект проработает ещё времени при условии, что он уже проработал .

График Вейбулла

Данные распределения Вейбулла визуально могут быть оценены с использованием графика Вейбулла[2] . Это график типа Q-Q выборочной функции распределения со специальными осями. Оси — и Причина изменения переменных в том, что выборочная функция распределения Вейбулла может быть представлена в линейном виде


Поэтому если данные получены из распределения Вейбулла, на графике Вейбулла можно ожидать прямую линию.

Есть множество способов получения выборочной функции распределения из данных: один из методов заключается в том, чтобы получить вертикальную координату каждой точки, используя , где  — это ранг точки данных, а  — это общее количество точек.[3]

Использование

Распределение Вейбулла используется:
  • В прогнозировании погоды
    • Для описания распределения скорости ветра как распределения, обычно совпадающего с распределением Вейбулла в ветроэнергетике
  • В радиолокационных системах для моделирования дисперсии уровня принимаемого сигналов, создаваемой некоторыми типами помех
  • В моделировании замирания сигнала в беспроводных коммуникациях
  • В прогнозировании технологических изменений
  • В гидрологии распределение Вейбулла применимо к экстремальным событиям, таким как выпадение годовой нормы дождей за день или разливу реки. На рисунке показано такое соответствие, а также 90 % доверительный интервал, основанный на биномиальном распределении.
  • В описании размера частиц, полученных путём размельчения, помола или дробления
  • Из-за доступности используется в электронных таблицах, когда основное поведение в действительности лучше описывается распределением Эрланга


Связь с другими распределениями
  • 3-параметрическое распределение Вейбулла. Имеет функцию плотности


где и f(x; k, , ) = 0 при x < , где  — коэффициент формы,  — коэффициент масштаба и  — коэффициент сдвига распределения. Когда =0, оно сводится к 2-х параметрическому распределению Вейбулла.
  • 1-параметрическое распределение Вейбулла. Выводится предполагая и — константа:


Если  — экспоненциальное распределение для параметра , то случайная величина имеет распределение Вейбулла . Для доказательства рассмотрим функцию распределения :



Полученная функция — функция распределения для распределения Вейбулла.
.
  • С распределением Фреше: если , то .
  • С распределением Гумбеля: если , то .
  • Распределение Рэлея — частный случай распределения Вейбулла при и [4]
  • Распределение Вейбулла является частным случаем обобщённого распределения экстремальных значений[5]
  • Впервые распределение Вейбулла было применено для описания распределения размера частиц. Широко использовалось в обогащении полезных ископаемых при измельчении. В этом контексте функция распределения имеет вид


где
: Размер частицы
: 80-й процентиль распределения размера частиц
: Коэффициент, описывающий размах распределения


Примечания
  1. См. (Cheng, Tellambura & Beaulieu 2004) для случая целого k, и (Sagias & Karagiannidis 2005) в случае рационального.
  2. график Вейбулла. Дата обращения: 20 сентября 2015. Архивировано 25 марта 2008 года.
  3. Wayne Nelson (2004) Applied Life Data Analysis. Wiley-Blackwell ISBN 0-471-64462-5
  4. Rayleigh Distribution — MATLAB & Simulink — MathWorks Australia. Дата обращения: 21 сентября 2015. Архивировано 12 октября 2014 года.
  5. Всемирная Метеорологическая Организация. Руководство по гидрологической практике. — 6. — Швейцария, 2012. — Т. 2. — С. 165. — ISBN 978-92-63-40168-7..


Литература

Ссылки
Downgrade Counter