Меню
Главная
Случайная статья
Настройки
|
Сэр Джордж Габриель Стокс (англ. Sir George Gabriel Stokes; 13 августа 1819 — 1 февраля 1903) — английский математик, механик и физик-теоретик ирландского происхождения. Работал в Кембриджском университете, внёс значительный вклад в гидро- и газодинамику (уравнения Навье — Стокса), оптику и математическую физику.
Член Лондонского королевского общества (1851), его секретарь в 1854—1885 гг. и президент в 1885—1890 гг.[2][3].
Содержание
Биография
Родился 13 августа 1819 года в деревне Скрин (Ирландия). Был младшим сыном протестантского священника евангелиста Габриэля Стокса. В 1841 г. окончил Кембриджский университет, с 1849 года — профессор математики этого университета[2]. В 1857 году Стокс женился. Умер в Кембридже 1 февраля 1903 года.
Научная деятельность
Работы Стокса относятся к теоретической механике, гидродинамике, теории упругости, теории колебаний, оптике, математическому анализу и математической физике[2].
Одновременно с Ф. Л. Зейделем ввёл (1848) понятие равномерной сходимости последовательности и ряда[4].
Обратившись к гидродинамике вязкой жидкости, Стокс в 1845 г. в работе «О теории внутреннего трения в движущихся жидкостях и о равновесии и движении упругих твёрдых тел» (опубликована в 1849 г.) вывел дифференциальные уравнения, описывающие течения вязких (и, в общем случае, сжимаемых) жидкостей, ныне называемые уравнениями Навье — Стокса. Выводит он их в пятый раз[5]; раньше они были получены А. Навье (1821 г. — для случая несжимаемой жидкости), О. Коши (1828 г.), С. Пуассоном (1829 г.) и А. Сен-Венаном (1843 г.). Однако традиция связывать данные уравнения прежде всего с именами Навье и Стокса исторически вполне объяснима[6], поскольку именно Стоксу принадлежит вариант вывода этих уравнений, последовательно исходящий из континуальной концепции. Историк науки И. Б. Погребысский отмечал: «Внимание к физической стороне дела, учёт экспериментальных результатов, ясная кинематическая картина движения и исчерпывающая формулировка исходного динамического „принципа“ — всё это в сочетании с несколькими удачными применениями теории сделало работу Стокса основным отправным пунктом для дальнейших работ по теории вязкой жидкости»[5].
Как ранее поступал Коши, Стокс предпослал своим рассмотрениям тщательный кинематический анализ, в котором он открыл природу завихрённости (англ. vorticity) как локальной угловой скорости[7].
Представления молекулярной механики у Стокса играют чисто вспомогательную роль. Пренебрегая иррегулярной составляющей скорости жидкости (зависящей от расстояний между молекулами и взаимодействий между последними), Стокс оперировал средней (регулярной) скоростью жидкости в окрестности жидкой частицы. Исходной его гипотезой при выводе уравнений движения вязкой жидкости была линейная зависимость шести компонент напряжения от шести компонент скоростей деформации жидкой частицы[8].
Рассматривая жидкость как сплошную среду, Стокс обратился к понятию внутреннего трения, и его трактовка данного явления стала обобщением трактовки Ньютона. Опираясь на свои результаты, Стокс внёс поправки в выполненный ранее Ньютоном анализ задачи о вращении вязкой жидкости в цилиндре[7]. Как показал Стокс, ошибка, допущенная Ньютоном при решении данной задачи, заключалась в том, что последний вместо моментов сил трения, действующих на внешнюю и внутреннюю поверхности каждого из мысленно выделяемых в жидкости цилиндрических слоёв, рассматривал сами эти силы. В результате у Ньютона оказывалось, что время одного оборота жидкой частицы зависит от радиуса цилиндрического слоя линейно, а из результатов Стокса следует, что данное время пропорционально квадрату радиуса[9].
Стоксу удалось теоретически объяснить и формулу Гагена — Пуазейля для расхода вязкой несжимаемой жидкости при стационарном течении в цилиндрической трубе[10].
В 1848 г. Стокс получил дифференциальные уравнения, описывающие закон изменения вихря с течением времени[11]. В 1851 г. он вывел формулу для силы сопротивления , действующей на твёрдый шар при его медленном равномерном движении в неограниченной вязкой жидкости[12]. Эта формула — формула Стокса — имеет вид:
- ,
где и — радиус и скорость шара, — динамический коэффициент вязкости жидкости[13].
Стокс занимался также изучением поглощения звука в жидкости; однако анализ Стокса был неполным, поскольку он в качестве единственного диссипативного механизма рассматривал вязкость, но не рассматривал теплопроводность (чего и нельзя было сделать до открытия взаимосвязи между теплотой и работой)[7].
Что касается работ Стокса в области теории упругости, то в уже упоминавшейся работе «О теории внутреннего трения в движущихся жидкостях и о равновесии и движении упругих твёрдых тел» он показал, что свойство упругих тел совершать изохронные колебания обусловлено тем, что при малых деформациях напряжения, возникающие в теле, являются линейными функциями деформаций[14]. Стокс исследовал также динамический прогиб мостов[4].
В области оптики Стокс исследовал аберрацию света, кольца Ньютона, интерференцию и поляризацию света, спектры, люминесценцию. В 1852 г. установил, что длина волны фотолюминесценции больше длины волны возбуждающего света (правило Стокса)[12].
Имя Стокса носит также одна из важнейших формул векторного анализа — формула Стокса, связывающая ротор векторного поля с циркуляцией этого поля по замкнутому контуру, ограничивающему некоторый участок ориентированной поверхности. Данная формула была получена в 1849 г. У. Томсоном; а Стокс включил её в ежегодный конкурсный математический экзамен в Кембридже, который он проводил с 1849 по 1882 годы[15].
Признание
С 1849 по 1903 годы Джордж Стокс переизбирался почётным Лукасовским профессором в Кембриджском университете. За достижения в области исследования света в 1852 году Стокс получил медаль Румфорда от Королевского Общества, а в 1893 медаль Копли. В 1889 году получил дворянский титул баронета.
Был членом многих иностранных академий, в том числе Парижской академии наук[12][16] и Военно-медицинской академии в Петербурге.
В честь него названа единица измерения вязкости в системе СГС, кратер на Луне и кратер на Марсе, минерал стокезит.
В 1999 году в честь Стокса была создана Премия сэра Джорджа Стокса.
См. также
Примечания
- Архив по истории математики Мактьютор — 1994.
- 1 2 3 Боголюбов, 1983, с. 454.
- Stokes; Sir; George Gabriel (1819 - 1903) // Сайт Лондонского королевского общества (англ.)
- 1 2 Боголюбов, 1983, с. 455.
- 1 2 Погребысский, 1966, с. 129.
- Погребысский, 1966, с. 143.
- 1 2 3 Truesdell, 1976, p. 122.
- Тюлина, 1979, с. 233—234.
- Тюлина, 1979, с. 224.
- Ландау, Лифшиц, 1986, с. 82.
- Погребысский, 1966, с. 288.
- 1 2 3 Храмов, 1983, с. 255.
- Ландау, Лифшиц, 1986, с. 93.
- Погребысский, 1966, с. 117.
- Шилов, 1972, с. 385.
- Les membres du pass dont le nom commence par S Архивная копия от 6 августа 2020 на Wayback Machine (фр.)
Литература- Боголюбов А. Н. Математики. Механики. Биографический справочник. — Киев: Наукова думка, 1983. — 639 с.
- Храмов Ю. А. Стокс Джордж Габриэль (Stokes George Gabriel) // Физики : Биографический справочник / Под ред. А. И. Ахиезера. — Изд. 2-е, испр. и доп. — М. : Наука, 1983. — С. 254. — 400 с. — 200 000 экз.
- Scott В. E. Men and milestones in optics. G. G. Stokes // Appl. Optics, 1, 1. — 1962. — P. 69—73.
|
|