Меню
Главная
Случайная статья
Настройки
|
Вычитание (убавление) — одна из вспомогательных бинарных математических операций (арифметических действий) двух аргументов (уменьшаемого и вычитаемого), результатом которой является новое число (разность)[1], получаемое уменьшением значения первого аргумента на значение второго аргумента. На письме обычно обозначается с помощью знака «минус»: . Вычитание — операция обратная сложению.
В общем виде можно записать: , где и . То есть каждой паре элементов из множества ставится в соответствие элемент , называемый разностью и . Вычитание возможно только, если оба аргумента принадлежат одному множеству элементов (имеют одинаковый тип).
При наличии отрицательных чисел, вычитание удобно рассматривать и определять как разновидность сложения — сложение с отрицательным числом[2]. К примеру, можно рассматривать как сложение: .
На множестве вещественных чисел область значений функции сложения графически имеет вид плоскости проходящей через начало координат и наклонённой к осям на 45° угловых градусов.
У вычитания есть несколько важных свойств, например для :
- Антикоммутативность:
- Неассоциативность:
- Дистрибутивность:
- Вычитание (нулевого элемента) даёт число равное исходному:
В качестве примера, на картинке справа запись обозначает пять яблок вычесть два яблока, что в результате даёт три яблока. Заметим, что нельзя вычесть например из 5 яблок 2 груши. Помимо счёта яблок, вычитание также может представлять разность других физических и абстрактных величин, таких как: отрицательные числа, дробные числа, векторы, функции, и другие.
Содержание
Формы записи и терминология
Вычитание записывается с использованием символа «минус»: «» между аргументами, такая форма записи называется инфиксной нотацией. В данном контексте символ «минус» является бинарным оператором. Результат записывается с использованием знака равенства «», например:
- ;
- («шесть минус три равно три») ;
- («шестьдесят четыре минус тридцать пять равно двадцать девять») .
На письме символ «минус» очень похож на другие письменные символы «дефис», «тире» и другие. Следует внимательнее разбирать выражение, чтобы не возникло ошибочного истолкования символа.
Свойства
Операция вычитание на числовых множествах имеет следующие основные свойства:
- Вычитание антикоммутативно — от перемены мест аргументов разность изменяется:
- Антикоммутативность:
- Вычитание антиассоциативно — при последовательном выполнении вычитания трёх или более чисел последовательность выполнения операций имеет значение, результат изменится:
- Неассоциативность:
- Вычитание дистрибутивно, это — свойство согласованности двух бинарных операций, определённых на одном и том же множестве, также известно, как распределительный закон[4] .
- Дистрибутивность:
- Относительно вычитания в множестве существует единственный нейтральный элемент, вычитание из числа нулевого (или нейтрального элемента) даёт число равное исходному:
- Нулевой элемент:
- Вычитание нуля идемпотентно — повторное применение операции к объекту даёт тот же результат, что и одинарное:
- Идемпотентность: ;
Результат вычитания не всегда является определённым для множества натуральных чисел : чтобы получить натуральное число в результате вычитания, уменьшаемое должно быть больше вычитаемого. Невозможно в рамках натуральных чисел вычесть из меньшего числа большее.
Операция вычитания чисел определённых на множествах даёт число (разность) принадлежащее этому же множеству, следовательно операция вычитание относится к замкнутым операциям (операциям, не выводящим результат из данного множества чисел), то есть множества чисел образуют кольца относительно операции вычитания.
Выполнение вычитания
Операцию вычитания можно представить, как некий «чёрный ящик» с уменьшаемым и вычитаемым на входе и одним выходом — разностью:
При практическом решении задачи вычитания двух чисел необходимо свести её к последовательности более простых операций: «простое вычитание», заём, сравнение и др. Для этого разработаны различные методы вычитания, например для чисел, дробей, векторов и др. На множестве натуральных чисел в настоящее время используется алгоритм поразрядного вычитания. При этом следует рассматривать вычитание как процедуру, в отличие от операции.
Как видим, процедура достаточно сложная, состоит из относительно большого числа шагов и при вычитании больших чисел может занять продолжительное время.
«Простое вычитание» — в данном контексте обозначает операцию вычитания чисел меньше двадцати, которая может быть легко сведена к декрементированию. Является гипероператором декрементирования:
где: — последовательность операций инкрементирования, выполненная раз; — последовательность операция декрементирования, выполненная раз.
Чтобы упростить и ускорить процесс вычитания используют табличный метод «простого вычитания», для этого заранее вычисляют все комбинации разностей чисел от 18 до 0 и берут готовый результат из этой таблицы [5]:
|
|