Меню

Главная
Случайная статья
Настройки
Центральный биномиальный коэффициент
Материал из https://ru.wikipedia.org

В математике nцентральный биномиальный коэффициент определяется следующим выражением в терминах биномиальных коэффициентов
для всех .


Они получили своё название в связи с тем, что они находятся в точности посередине чётных рядов в треугольнике Паскаля. Первые несколько центральных биномиальных коэффициентов выписаны ниже, начиная с n = 0:
1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, … последовательность A000984 в OEIS


Свойства

Производящая функция:



По формуле Стирлинга получаем:
при .



Полезные ограничения:
для каждого



Если нужна большая точность:
где для всех .



С этим понятием тесно связаны т. н. числа Каталана, Cn. Их формула:
для каждого .


Обобщением центральных биномиальных коэффициентов можно считать числа , для всех действительных n, при которых выражение определено, где — это Гамма-функция, а это Бета-функция.

См. также

Ссылки
Downgrade Counter