Меню
Главная
Случайная статья
Настройки
|
Линк вершины многогранника или вершинная фигура — многогранник на единицу меньшей размерности, который получается в сечении исходного многогранника плоскостью, срезающей одну вершину.
В частности линк вершины содержит информацию о порядке следования граней многогранника вокруг одной вершины.
Содержание
Определения — основное и вариации
Если взять некоторую вершину многогранника, отметить точку где-нибудь на каждом из прилегающих рёбер, нарисовать отрезки на гранях, соединяя полученные точки, в результате получится полный цикл (многоугольник) вокруг вершины.
Этот многоугольник и является линком вершины.
Формальное определение может варьироваться очень широко в зависимости от обстоятельств. Например, Коксетер (1948, 1954) менял своё определение как ему удобно для текущего обсуждения.
Большинство нижеприведённых определений линка подходит одинаково хорошо как для бесконечных мозаик на плоскости, так и для пространственных мозаик из многогранников.
Как плоское сечение
Если срезать вершину многогранника, пересекая каждое из рёбер, смежных вершине, поверхность среза будет являться линком.
Это, пожалуй, наиболее общепринятый подход и наиболее понятный. Разные авторы делают срез в разных местах. Веннинджер[1][2] перерезает каждое ребро на единичном расстоянии от вершины, так же как это делает и Коксетер (1948). Для однородных многогранников построение Дормана Люка пересекает каждое смежное ребро в середине. Другие авторы делают сечение через вершину на другой стороне каждого ребра[3][4].
Как сферический многоугольник
Кромвель[5] делает сферическое сечение с центром в вершине.
Поверхность сечения или линк, тогда, является сферическим многоугольником на этой сфере.
Как множество связных вершин
Многие комбинаторные и вычислительные подходы (например, Скиллинг[6]) рассматривают линк как упорядоченное (или частично упорядоченное) множество точек всех соседних (соединённых ребром) вершин для данной вершины.
Абстрактное определение
В теории абстрактных многогранников линка заданной вершины V состоит из всех элементов, инцидентных вершине — вершин, рёбер, граней и т. д.
Это множество элементов известно как вершинная звезда.
Основные свойства
Линка вершины n-многогранника — это (n1)-многогранник.
Например, линком вершины 3-мерного многогранника является многоугольник,
а линком для 4-мерного многогранника является 3-мерный многогранник.
Линки наиболее полезны для однородных многогранников, поскольку все вершины имеют один линк.
Для невыпуклых многогранников линк может быть тоже невыпуклым.
Однородные многогранники, например, могут иметь грани в виде звёздчатых многоугольников,
звёздчатыми могут быть и линки.
Построение Дормана Люка
Грань двойственного многогранника двойственные линку соответствующей вершины.
Правильные многогранники
Если многогранник правильный, его можно описать символом Шлефли,
символы граней, и линков можно извлечь из этой записи.
В общем случае правильный многогранник с символом Шлефли {a,b,c,...,y,z} имеет грани (наибольшей размерности) {a,b,c,...,y}, а в качестве линка будет {b,c,...,y,z}.
- Для трёхмерного правильных многогранников, возможно звёздчатых {p,q}, линком будет {q}, q-угольник.
- Например, линк для куба {4,3} — треугольник {3}.
- Для правильных 4-мерных многогранников или пространственных мозаик {p,q,r} линком будет {q,r}.
- Например, линком для гиперкуба {4,3,3} будет правильный тетраэдр {3,3}.
- Линком для кубических сот {4,3,4} будет правильный октаэдр {3,4}.
Поскольку двойственный многогранник правильного многогранника также является правильным и представляется обратными индексами в символе Шлефли, легко понять, что двойственная фигура к линку вершины является ячейкой двойственного многогранника.
Для правильных многогранников этот факт является частным случаем построения Дормана Люка.
Пример линка сот
Линком вершины усечённых кубических сот[англ.] является неоднородная квадратная пирамида. Один октаэдр и четыре усечённых куба, расположенных около каждой вершины, образуют пространственную мозаику.
Линк ребра
С линком связано другое понятие — линк ребра.
Линк ребра является (n2)-многогранником, представляющим расстановку граней размерности n1 вокруг данного ребра (прилегающих к данному ребру).
Линк ребра является линком вершины линка вершины[7]. Линки ребер полезны для выражения связей между элементами правильных и однородных многогранников.
Правильные и однородные многогранники, полученные в результате отражений с одним активным зеркалом, имеют единственный тип линка ребра, но в общем случае однородный многогранник может иметь столько линков, сколько зеркал активны при построении, поскольку каждое активное зеркало создаёт ребро в фундаментальной области.
Правильные многогранники (и соты) имеют единственный линк ребра, которая является также правильным.
Для правильного многогранника {p,q,r,s,...,z} линк ребра будет {r,s,...,z}.
В четырёхмерном пространстве линк ребра многогранника или трёхмерных сот является многоугольником, представляющим расположение граней вокруг ребра.
Например, линк ребра правильных кубических сот {4,3,4} является квадрат, а для правильного четырёхмерного многогранника {p,q,r} линк ребра будет {r}.
Менее очевидно, что у усечённых кубических сот[англ.] t0,1{4,3,4} в качестве линк вершины выступает квадратная пирамида. Здесь присутствует два типа линков ребер.
Один — квадратный линк ребра при вершине пирамиды, она соответствует четырём усечённым кубам вокруг ребра.
Второй лик — треугольники при основании пирамиды.
Они представляют расположение двух усечённых кубов и октаэдра вокруг других ребер.
См. также
Примечания
- Веннинджер, 1974, с. 23.
- Wenninger, 2003.
- Coxeter, 1954, p. 401–450.
- Skilling, 1975, p. 111–135.
- Cromwell, 1999.
- Skilling, 1975.
- Klitzing: Vertex figures, etc. (неопр.) Дата обращения: 3 ноября 2015. Архивировано 8 августа 2011 года.
Литература
Ссылки
|
|