Меню

Главная
Случайная статья
Настройки
Гипероктаэдр
Материал из https://ru.wikipedia.org

Гипероктаэдргеометрическая фигура в n-мерном евклидовом пространстве: правильный политоп, двойственный n-мерному гиперкубу. Другие названия: кокуб[1], ортоплекс, кросс-политоп.

Символ Шлефли n-мерного гипероктаэдра — {3;3;...;3;4}, где всего в скобках (n-1) число.

Гипероктаэдр можно понимать как шар в метрике городских кварталов.

Содержание

Частные случаи
Число измерений n Название фигуры Символ Шлефли Изображение
1 отрезок {}
2 квадрат {4}
3 октаэдр {3;4}
4 шестнадцатиячейник {3;3;4}
5 5-ортоплекс {3;3;3;4}


Описание

-мерный гипероктаэдр имеет вершин; любая вершина соединена ребром с любой другой — кроме (при вершины, симметричной ей относительно центра политопа.

Все его -мерные гиперграни — одинаковые правильные симплексы; их число равно

Угол между двумя смежными -мерными гипергранями (при равен .

-мерный гипероктаэдр можно представить как две одинаковых правильных -мерных пирамиды, приложенные друг к другу своими основаниями в форме -мерного гипероктаэдра.

В координатах

-мерный гипероктаэдр можно расположить в декартовой системе координат так, чтобы его вершины имели координаты При этом каждая из его -мерных гиперграней будет располагаться в одном из ортантов -мерного пространства.

Начало координат будет центром симметрии политопа, а также центром его вписанной, описанной и полувписанных гиперсфер.

Поверхность гипероктаэдра будет геометрическим местом точек чьи координаты удовлетворяют уравнению


а внутренность — геометрическим место точек, для которых


Метрические характеристики

Если -мерный гипероктаэдр имеет ребро длины то его -мерный гиперобъём и -мерная гиперплощадь поверхности выражаются соответственно как


Радиус описанной -мерной гиперсферы (проходящей через все вершины) при этом будет равен


радиус -й полувписанной гиперсферы (касающейся всех -мерных гиперграней в их центрах; ) —


радиус вписанной гиперсферы (касающейся всех -мерных гиперграней в их центрах) —


Примечания
  1. Е. Ю. Смирнов. Группы отражений и правильные многогранники. — М.: МЦНМО, 2009. — С. 44. (Архивная копия от 27 января 2021 на Wayback Machine)


Ссылки
Downgrade Counter