Телесный угол — часть пространства, которая является объединением всех лучей, выходящих из данной точки (вершины угла) и пересекающих некоторую поверхность (которая называется поверхностью, стягивающей данный телесный угол). Частными случаями телесного угла являются трёхгранные и многогранные углы. Границей телесного угла является некоторая коническая поверхность. Обозначается телесный угол обычно буквой .
Телесный угол измеряется отношением площади той части сферы с центром в вершине угла, которая вырезается этим телесным углом, к квадрату радиуса сферы:
Двойственный телесный угол к данному телесному углу
Телесные углы измеряются отвлечёнными (безразмерными) величинами. Единицей измерения телесного угла в системе СИ является стерадиан, равный телесному углу, вырезающему из сферы радиуса
Полный телесный угол (полная сфера) равен 4 стерадиан.
Сумма всех телесных углов, двойственных к внутренним телесным углам выпуклого многогранника, равна полному углу.
Величины некоторых телесных углов
Треугольник с координатами вершин , , виден из начала координат под телесным углом
где — смешанное произведение данных векторов, — скалярные произведения соответствующих векторов, полужирным шрифтом обозначены векторы, нормальным шрифтом — их длины. Используя эту формулу, можно вычислять телесные углы, стянутые произвольными многоугольниками с известными координатами вершин (для этого достаточно разбить многоугольник на непересекающиеся треугольники).
Телесный угол при вершине прямого кругового конуса с углом раствора равен Если известны радиус основания и высота конуса, то Когда угол раствора конуса мал, (угол выражен в радианах), или (угол выражен в градусах). Так, телесный угол, под которым с Земли видны Луна и Солнце (их угловой диаметр примерно равен 0,5°), составляет около 6105 стерадиан, или 0,0005 % площади небесной сферы (то есть полного телесного угла).
Телесный угол двугранного угла в стерадианах равен удвоенному значению двугранного угла в радианах.
Телесный угол, под которым видна грань правильного N-гранника из его центра, равна полного телесного угла, или стерадиан.
Телесный угол при вершине наклонного кругового конуса Телесный угол, под которым виден круг радиусом R из произвольной точки пространства (то есть телесный угол при вершине произвольного кругового конуса, не обязательно прямого) вычисляется с использованием полных эллиптических интегралов 1-го и 3-го рода[2]:
при
при
где и — полные нормальные эллиптические интегралы Лежандра 1-го и 3-го рода, соответственно;
— расстояние от центра основания конуса до проекции вершины конуса на плоскость основания;
Van Oosterom A., Strackee J. The Solid Angle of a Plane Triangle (англ.) // IEEE Transactions on Biomedical Engineering. — 1983. — Vol. 30. — P. 125—126. — ISSN0018-9294. — doi:10.1109/TBME.1983.325207. — PMID6832789.
Weisstein E. W.Solid Angle. From MathWorld--A Wolfram Web Resource.
Gardner R.P., Verghese K. On the solid angle subtended by a circular disc (англ.) // Nuclear Instruments and Methods. — 1971. — Vol. 93. — P. 163—167. — doi:10.1016/0029-554X(71)90155-8. — .