Меню
Главная
Случайная статья
Настройки
|
Ромбоусечённый икосододекаэдр[1] или усечённый икосододекаэдр[2][3] — полуправильный многогранник (архимедово тело) с 62 гранями, составленный из 30 квадратов, 20 правильных шестиугольников и 12 правильных десятиугольников.
В каждой из его 120 одинаковых вершин сходятся одна квадратная грань, одна шестиугольная и одна десятиугольная. Телесный угол при вершине равен в точности
Имеет 180 рёбер равной длины. При 60 рёбрах (между квадратной и шестиугольной гранями) двугранные углы равны при 60 рёбрах (между квадратной и десятиугольной гранями) при 60 рёбрах (между шестиугольной и десятиугольной гранями)
Название «усечённый икосододекаэдр», которое первоначально дал этому многограннику Кеплер, способно ввести в заблуждение. Дело в том, что в результате операции усечения, «срезав» с икосододекаэдра 30 четырёхугольных пирамид, можно получить лишь несколько иной многогранник, четырёхугольные грани которого — золотые прямоугольники, а не квадраты. Полученный многогранник полуправильным не является; впрочем, он изоморфен настоящему ромбоусечённому икосододекаэдру и может быть превращён в таковой при помощи небольшой деформации.
Содержание
В координатах
Ромбоусечённый икосододекаэдр можно расположить в декартовой системе координат так, чтобы координаты его вершин были всевозможными циклическими перестановками наборов чисел
где — отношение золотого сечения.
Начало координат будет при этом центром симметрии многогранника, а также центром его описанной и полувписанной сфер.
Метрические характеристики
Если ромбоусечённый икосододекаэдр имеет ребро длины , его площадь поверхности и объём выражаются как
Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен
радиус полувписанной сферы (касающейся всех рёбер в их серединах) —
Вписать в ромбоусечённый икосододекаэдр сферу — так, чтобы она касалась всех граней, — невозможно. Радиус наибольшей сферы, которую можно поместить внутри ромбоусечённого икосододекаэдра с ребром (она будет касаться только всех десятиугольных граней в их центрах), равен
Расстояния от центра многогранника до шестиугольных и квадратных граней превосходят и равны соответственно
Примечательные свойства
Среди всех платоновых тел, архимедовых тел и тел Джонсона с заданной длиной ребра ромбоусечённый икосододекаэдр имеет наибольший объём, наибольшую площадь поверхности и наибольший диаметр.
Среди всех платоновых тел, архимедовых тел и тел Джонсона ромбоусечённый икосододекаэдр имеет наибольшее число вершин и наибольшее число рёбер (но не наибольшее число граней — здесь первое место занимает курносый додекаэдр).
Примечания
- Веннинджер, 1974, с. 20, 40.
- Энциклопедия элементарной математики, 1963, с. 437, 434.
- Люстерник, 1956, с. 184.
Ссылки
Литература
|
|