Меню

Главная
Случайная статья
Настройки
Умножение
Материал из https://ru.wikipedia.org

Умножение — одна из основных математических операций над двумя аргументами, которые называются множителями или сомножителями (иногда первый аргумент называют множимым, а второй множителем). Результат умножения называется их произведением[1].

Для натуральных чисел умножение определяется как многократное сложение[1] — чтобы умножить число на число , надо сложить чисел (умножение далее обозначено приподнятой точкой между сомножителями):
.


Умножение для других типов чисел — целых, рациональных, вещественных, комплексных — определяется не через многократное сложение, а путём систематического обобщения.

Умножение чисел является коммутативной операцией, то есть порядок записи чисел-множителей не влияет на результат их умножения. Например, умножение чисел и может быть записано как , так и (произносится также «пятью три», «трижды пять»), и результатом в любом случае является число . Проверка через сложение:
,
.


Умножение определяется не только для чисел, но и для различных нечисловых математических объектов[2] (например, матриц, векторов, множеств, кватернионов и т. д.), для каждого из которых имеет различный смысл, различные определения и свойства. Например, операция умножения для нечисловых объектов не всегда является коммутативной операцией.

При умножении физических величин важную роль играет их размерность, которая равноправно участвует в умножении

Изучение общих свойств операции умножения входит в задачи общей алгебры, в частности теории групп и колец[2].

Содержание

Формы записи и терминология

Умножение записывается с использованием знака умножения (, , ) между аргументами, такая форма записи называется инфиксной нотацией. В данном контексте знак умножения является бинарным оператором. Знак умножения не имеет специального названия, тогда как, например, знак сложения называется «плюс».

Самый старый из используемых символов — косой крестик (). Впервые его использовал английский математик Уильям Отред в своём труде «Clavis Mathematicae» 1631 г. Немецкий математик Лейбниц предпочитал знак в виде приподнятой точки (). Этот символ он использовал в письме 1698 года. Йоханн Ран ввёл звёздочку () в качестве знака умножения, она появилась в его книге «Teutsche Algebra» 1659 г.

В российских учебниках математики в основном используется знак в виде приподнятой точки (). Звёздочка () используется, как правило, в текстах компьютерных программ.

Результат записывается с использованием знака равенства «», например:
(«шесть умножить на три равно восемнадцать» или «шестью три — восемнадцать»).


Часто в математических выражениях знак умножения опускается (не записывается), если это не вызывает неоднозначного прочтения. Например вместо пишется . Как правило, знак умножения опускают, если одним из множителей является однобуквенная переменная, функция или выражение в скобках: , , . В случае, когда в выражении есть деление на произведение, в котором опущен знак умножения, обычно также опускаются и скобки вокруг произведения[3]: записывается как . В таком выражении простая подстановка знака умножения на место, где он пропущен, приведёт к путанице[4], поэтому нужно восстанавливать и опущенные скобки (либо считать, что у опущенного умножения приоритет выше, чем у деления[5]).

Традиционно при записи произведения нескольких множителей числа записывают перед переменными, а переменные — перед функциями. Так, выражение будет записано как . Выражения в скобках традиционно записывают последними, то есть выражение будет записано как .

Свойства

Далее описаны основные свойства операции умножения на числовых множествах .
  • Умножение коммутативно, то есть от перемены мест множителей произведение не меняется. Свойство также известно как переместительный закон умножения[6]:
Коммутативность:
  • Умножение ассоциативно, то есть при последовательном выполнении умножения трёх или более чисел последовательность выполнения операций не имеет значения. Свойство также известно как сочетательный закон умножения[6]:
Ассоциативность:
  • Умножение дистрибутивно, это свойство согласованности двух бинарных операций, определённых на одном и том же множестве. Свойство также известно как распределительный закон[6]:
Дистрибутивность:
  • Относительно умножения в множестве существует единственный нейтральный элемент — (число «один»). Умножение любого числа на (нейтральный элемент) даёт число, равное исходному:
Нейтральный элемент:
  • Умножение на идемпотентно, то есть повторное применение операции к объекту даёт тот же результат, что и одинарное:
Идемпотентность:
  • Умножение на (нулевой элемент) даёт (нуль):
Нулевой элемент:


Операция умножения чисел, определённых на множествах , даёт произведение, принадлежащее этому же множеству. Следовательно, операция умножения относится к замкнутым операциям, то есть множества чисел образуют кольца относительно операции умножения.

На языке общей алгебры вышеперечисленные свойства сложения говорят о том, что являются абелевыми группами относительно операции умножения.

В математических выражениях операция умножения имеет более высокий приоритет по отношению к операциям сложения и вычитания, то есть она выполняется перед ними, но менее высокий приоритет, чем операция возведения в степень.

На множестве вещественных чисел область значений функции умножения графически имеет вид поверхности проходящей через начало координат и изогнутой с двух сторон в виде параболы.

Выполнение умножения

При практическом решении задачи умножения двух чисел необходимо свести её к последовательности более простых операций: «простое умножение», сложение, сравнение и др. Для этого разработаны различные методы умножения, например для чисел, дробей, векторов и др. На множестве натуральных чисел в настоящее время используется алгоритм поразрядного умножения. При этом следует рассматривать умножение как процедуру (в отличие от операции).

Процедура достаточно сложная, состоит из относительно большого числа шагов и при умножении больших чисел может занять продолжительное время.

«Простое умножение» в данном контексте обозначает операцию умножения одноразрядных чисел, которая может быть легко сведена к сложению. Является гипероператором сложения:





где — последовательное сложение элементов.

Чтобы упростить и ускорить процесс умножения используют табличный метод «простого умножения», для этого заранее вычисляют все комбинации произведений чисел от 0 до 9 и берут готовый результат из этой таблицы[7]:
Downgrade Counter