Если применить к гептеракту альтернацию (удаление чередующихся вершин), можно получить однородный семимерный многогранник, называемый полугептеракт, который является представителем семейства полугиперкубов.
Свойства
Если у гептеракта — длина ребра, то существуют следующие формулы для вычисления основных характеристик тела:
Гептеракт можно визуализировать либо параллельным, либо центральным проецированием. В первом случае обычно применяется косоугольная параллельная проекция, которая представляет собой 2 равных гиперкуба размерности n-1, один из которых может быть получен в результате параллельного переноса второго (для гептеракта это 2 гексеракта), вершины которых попарно соединены. Во втором случае обычно используют диаграмму Шлегеля, которая выглядит как гиперкуб размерности n-1, вложенный в гиперкуб той же размерности, у которых вершины также попарно соединены (для гептеракта проекция представляет собой гексеракт, вложенный в другой гексеракт).
Изображения
Проекция вращения гептеракта
Ссылки
Кокстер, Правильные политопы, (третье издание, 1973), Dover edition, ISBN 0-486-61480-8