Меню

Главная
Случайная статья
Настройки
Теория эфира Лоренца
Материал из https://ru.wikipedia.org

Теория эфира Лоренца (ТЭЛ) уходит своими корнями в «теорию электронов» Хендрика Лоренца, которая была последней точкой в разработке теорий классического эфира в конце XIX — начале XX века[1].

Изначально теория Лоренца была создана между 1892 и 1895 гг. и базировалась на гипотезе о полностью неподвижном эфире. Она объясняла неудачи попыток обнаружения движения относительно эфира в первом порядке v/c, введя вспомогательную переменную «локальное время» для объединения покоящихся и движущихся в эфире систем. Дополнительно отрицательный результат опыта Майкельсона в 1892 г. привёл к гипотезе сокращения Лоренца. Однако остальные эксперименты также дали отрицательный результат, и (руководствуясь принципом относительности А. Пуанкаре) в 1899, 1904 гг. Лоренц пытался расширить свою теорию до всех порядков v/c, введя преобразования Лоренца. Он также полагал, что неэлектромагнитные силы (если они существуют) преобразуются так же, как электромагнитные. Однако Лоренц ошибся в формуле для плотности заряда и тока, поэтому его теория не исключала в полной мере возможность обнаружения эфира. В итоге в 1905 году Пуанкаре исправил ошибки Лоренца и включил в теорию неэлектромагнитные силы, в том числе гравитацию. Многие аспекты теории Лоренца вошли в специальную теорию относительности (СТО) в работах А. Эйнштейна и Г. Минковского.

Сегодня ТЭЛ часто трактуется как некий вид «лоренц»-интерпретации специальной теории относительности[2]. Введение сокращения длин и замедления времени в «привилегированной» системе отсчета, которая играет роль неподвижного эфира Лоренца, ведет к полным преобразованиям Лоренца (в качестве примера см. Теория Робертсона — Мансури — Секла[англ.]). Так как в обеих теориях присутствует одинаковый математический формализм, то нет возможности экспериментально различить ТЭЛ и СТО. Но так как в ТЭЛ предполагается существование необнаружимого эфира, а справедливость принципа относительности представляется лишь совпадением, то в целом предпочтение отдается СТО.

Содержание

Историческое развитие

Основная концепция

Эта теория, которая была разработана главным образом между 1892 и 1906 гг. Лоренцем и Пуанкаре, была основана на теории эфира Огюстен Жана Френеля, уравнениях Максвелла и электронной теории Рудольфа Клаузиуса.[B 1] Лоренц ввёл строгое разделение между веществом (электронами) и эфиром, в результате чего в его модели эфир полностью неподвижен и не приводится в движение в окрестностях весомой материи. Как позже сказал Макс Борн, для учёных того времени было естественно (хотя и не логически необходимо) идентифицировать систему покоя эфира Лоренца с абсолютным пространством Исаака Ньютона[B 2]. Условие этого эфира может быть описано электрическим полем E и магнитным полем H, где эти поля представляют собой «состояния» эфира (без дополнительной спецификации), связанных с зарядами электронов. Таким образом, абстрактный электромагнитный эфир заменяет старые модели механистического эфира. Вопреки Клаузиусу, который согласился с тем, что электроны подвержены дальнодействию, электромагнитное поле эфира появляется как посредник между электронами, а изменения в этом поле могут распространяться не быстрее скорости света. Лоренц теоретически объяснил эффект Зеемана на основе своей теории, за которую он получил Нобелевскую премию по физике в 1902 году. Джозеф Лармор в это же время нашёл аналогичную теорию, но его концепция была основана на механическом эфире. Фундаментальная концепция теории Лоренца в 1895 г.[A 1] была «теоремой соответствующих состояний» для членов порядка v/c. Эта теорема утверждает, что движущийся по отношению к эфиру наблюдатель может использовать те же уравнения электродинамически, что и наблюдатель в стационарной эфирной системе, поэтому они наблюдают одно и то же.

Сокращение длины

Большой проблемой для этой теории был опыт Майкельсона — Морли, проведённый в 1887 году. Согласно теориям Френеля и Лоренца относительное движение неподвижного эфира должно определяться этим экспериментом, однако результат был отрицательным. Сам Майкельсон считал, что результат подтвердил гипотезу о переносе эфира, в которой эфир полностью увлекается веществом. Однако другие эксперименты, подобные эксперименту Физо, и эффект аберрации опровергли эту модель.

Возможное решение появилось в поле зрения в 1889 году, когда Оливер Хевисайд получил из уравнений Максвелла, что векторный потенциал электромагнитного поля вокруг движущегося тела изменяется в соответствии с фактором . На основании этого результата и гипотезы о неподвижном эфире в соответствии с экспериментом Майкельсона-Морли Джордж Фицджеральд в 1889 году (качественно) и независимо от него Лоренц в 1892 году[A 2] (уже количественно) предположили, что не только электростатическое поле, но и молекулярные силы влияют таким образом, что размер тела по линии движения меньше на величину , чем размеры перпендикулярно линии движения. Однако наблюдатель, движущийся с Землёй, не заметил бы этого сокращения, потому что все другие инструменты сжимаются с одинаковым соотношением. В 1895 г.[A 1] Лоренц предложил три возможных объяснения этого относительного сокращения:[B 3]
  • Тело сокращается по линии движения и сохраняет свой размер перпендикулярно ему.
  • Размер тела остаётся неизменным по линии движения, но оно расширяется перпендикулярно ему.
  • Тело сжимается по линии движения и одновременно расширяется перпендикулярно ему.


Хотя возможная связь между электростатическими и межмолекулярными силами была использована Лоренцем как аргумент правдоподобия, гипотеза сжатия вскоре рассматривалась как чисто ad hoc. Важно также, чтобы такое сжатие затрагивало пространство между электронами, но не сами электроны, поэтому иногда называлось «межмолекулярная гипотеза». Так называемое Лоренцево сокращение без расширения перпендикулярно линии движения и точным значением (где  — длина покоя в эфире) была дана Лармором в 1897 году и Лоренцем в 1904 году. В том же году Лоренц также утверждал, что это сокращение влияет и на сами электроны[B 4]. Более подробно см. #Преобразования Лоренца[A 3].

Местное время

Важной частью теоремы соответствующих состояний в 1892 и 1895 гг.[A 1] было местное время , где  — это координата времени для наблюдателя, покоящегося в эфире, а  — это координата времени для наблюдателя, движущегося в эфире. (Вольдемар Фогт ранее использовал такое же выражение для локального времени в 1887 г. для связи с эффектом Доплера и несжимаемой средой). С помощью этого понятия Лоренц смог объяснить аберрацию света, эффект Допплера и эксперимент Физо (то есть измерение коэффициент сноса (эфира) Френеля) в движущихся и покоящихся жидкостях. Хотя сокращение Лоренца было реальным физическим эффектом, он рассматривал преобразование времени только как эвристическую рабочую гипотезу и математическое условие, упрощающее вычисление при переходе от покоящейся к «фиктивно» движущейся системы. В отличие от Лоренца, Пуанкаре видел в определении местного времени нечто большее, чем математический трюк, который он назвал «самой изобретательной идеей Лоренца»[A 4]. В The Measure of Time он писал в 1898[A 5]:

У нас нет прямой интуиции для одновременности, равно как и для равенства двух периодов. Если мы верим в эту интуицию, это иллюзия. Мы помогали себе определенными правилами, которые мы обычно используем, не предоставляя нам отчет об этом [...]. Поэтому мы выбираем эти правила не потому, что они верны, а потому, что они наиболее удобны, и мы могли бы суммировать их, говоря: «Одновременность двух событий или порядка их правопреемства — равенство двух длительностей должна определяться так, чтобы изложение естественных законов могло быть как можно более простым. Другими словами, все эти правила, все эти определения являются лишь плодом бессознательного оппортунизма.“[C 1]

В 1900 году Пуанкаре интерпретировал местное время как результат процедуры синхронизации, основанной на световых сигналах. Он предположил, что два наблюдателя A и B, которые движутся в эфире, синхронизируют свои часы с помощью оптических сигналов. Поскольку они считают, что они находятся в состоянии покоя, они должны учитывать только время передачи сигналов и затем объединить наблюдения, чтобы проверить, являются ли их часы синхронными. Однако с точки зрения наблюдателя, покоящегося в эфире, часы не синхронны и показывают местное время . Но поскольку движущиеся наблюдатели ничего не знают о своём движении, они не обнаружат этого[A 6]. В 1904 году он проиллюстрировал ту же процедуру следующим образом: A посылает сигнал в момент времени 0 к B, который получает его в момент времени . B также посылает сигнал в момент времени 0 к A, который получает его в момент времени . Если в обоих случаях имеет одинаковое значение, то часы синхронны, но только в системе, в которой часы находятся в состоянии покоя в эфире. Итак, согласно Darrigol[B 5] Пуанкаре понимал местное время как физический эффект точно так же, как сокращение длины, в отличие от Лоренца, который использовал ту же интерпретацию после 1906 года. Однако в противовес Эйнштейну, который позже использовал аналогичную процедуру синхронизации, которая называлась синхронизация Эйнштейна, Дарригол говорит, что Пуанкаре считал часы, покоящиеся в эфире, показывающими истинное время[A 4].

Однако вначале было неизвестно, что местное время включает в себя то, что теперь известно как замедление времени. Этот эффект был впервые замечен Лармором (1897), который писал, что «отдельные электроны описывают соответствующие части своих орбит в несколько раз короче для эфирной системы в отношении или ». И в 1899 г. для частоты колебаний осциллирующих электронов Лоренц отметил[A 7], «что в время вибрации будет в раз больше, чем в », где  — система отсчета эфира,  — математически-фиктивная система отсчета движущегося наблюдателя, и  — неопределенный фактор[B 6].

Преобразования Лоренца

В то время как «локальное время» могло объяснить отрицательный результат эксперимента по сносу эфира в первом порядке v/c, из-за других неудачных экспериментов по сносу эфира, таких как Опыт Траутона - Нобла, было необходимо изменить гипотезу, чтобы включить эффекты второго порядка. Математическим инструментом для этого является так называемое преобразование Лоренца. Это сделал Войг (Voigt) в 1887 году, который уже получил аналогичную систему уравнений (но с другим масштабным коэффициентом). Впоследствии Лармор в 1897 году и Лоренц в 1899 году[A 7] получили уравнения в форме, алгебраически эквивалентной тем, которые используются до сих пор (однако Лоренц в своих преобразованиях использовал неопределённый множитель ). В своей статье Электромагнитные явления в системе, движущейся с любой скоростью, меньшей, чем скорость света (1904[A 3] Лоренц попытался создать такую теорию, согласно которой все силы между молекулами зависят от преобразований Лоренца (в котором Лоренц устанавливает коэффициент на единицу) так же, как и электростатические силы. Другими словами, Лоренц попытался создать теорию, в которой относительное движение Земли и эфира (почти или полностью) невозможно обнаружить. Поэтому он обобщил гипотезу сокращения и утверждал, что не только силы между электронами, но и сами электроны сжимаются по линии движения. Однако Макс Абрахам (1904) быстро заметил недостаток этой теории: в рамках чисто электромагнитной теории сжатая электронная конфигурация неустойчива, и для стабилизации электронов необходимо ввести неэлектронную силу. Сам Абрахам поставил под сомнение возможность включения таких сил в теорию Лоренца.

Для решения этой проблемы 5 июня 1905 года Пуанкаре[A 8] представил так называемые «усилия Пуанкаре». Эти «усилия» были интерпретированы им как внешнее неэлектромагнитное давление, которое стабилизировало электроны, а также послужило объяснением сокращения длины[B 7]. Хотя он утверждал, что Лоренцу удалось создать теорию, которая соответствует постулату относительности, он показал, что уравнения электродинамики Лоренца были не полностью Лоренц-ковариантны. Таким образом, указывая на групповые характеристики преобразования, Пуанкаре продемонстрировал Лоренц-ковариантность уравнений Максвелла-Лоренца и скорректировал формулы преобразования Лоренца для плотности заряда и плотности тока. Он продолжил наброски модели гравитации (включая гравитационные волны), которая могла бы быть совместима с этими преобразованиями. Пуанкаре впервые использовал термин «преобразования Лоренца», и он дал им форму, которая используется до сих пор. (Где  — произвольная функция , которая должна быть установлена в единицу, чтобы сохранить групповые характеристики, а также установить скорость света в единицу).


В значительной степени расширенная работа (так называемая «бумага Палермо»)[A 9] была представлена Пуанкаре 23 июля 1905 года, но была опубликована в январе 1906 года, поскольку журнал выпускался только два раза в год. Он говорил буквально о «постулате относительности» и показал, что преобразования являются следствием принципа наименьшего действия; он более подробно продемонстрировал групповые характеристики преобразования, которые он назвал группой Лоренца, и показал, что комбинация является инвариантом. Разрабатывая свою теорию гравитации, он заметил, что преобразование Лоренца — это просто поворот в четырёхмерном пространстве вокруг начала координат, введя в качестве четвёртой мнимой координаты. Также он использовал раннюю форму четырёхвектора. Однако позже Пуанкаре сказал, что перевод физики на язык четырёхмерной геометрии повлечёт за собой слишком большие усилия, приносящие лишь ограниченной пользы, и поэтому он отказался разрабатывать следствия этой идеи. Это было позже сделано Минковским, см. «Сдвиг к теории относительности» («The shift to relativity»)[B 8].

Электромагнитная масса

Дж. Томсон (1881) и другие заметили, что электромагнитная энергия вносит вклад в массу заряженных тел на величину , которую назвали электромагнитной, или «кажущейся», массой. Другой вывод разновидности электромагнитной массы был проведен Пуанкаре (1900). Используя импульс электромагнитных полей, он пришёл к выводу, что эти поля вносят массу во все тела, что необходимо для сохранения теоремы о центре масс.

Как заметил Томсон и другие, эта масса также увеличивается со скоростью. Таким образом, в 1899 году Лоренц вычислил, что отношение массы электрона в движущейся системе отсчёта по отношению к системе отсчёта эфира составляет параллельно направлению движения и перпендикулярно направлению движения, где и  — неопределённый фактор[A 7]. И в 1904 году он установил , получив выражения для масс в разных направлениях (продольном и поперечном)[A 3]:


где


Многие учёные тогда считали, что вся масса и все формы сил — электромагнитны по своей природе. Однако эту идею пришлось отбросить в ходе развития релятивистской механики. Авраам (1904) утверждал (как описано в предыдущем разделе #Преобразования Лоранца), что в модели электронов Лоренца были необходимы неэлектрические силы связывания. Но Авраам также отметил, что получаются разные результаты в зависимости от того, вычисляется ли электромагнитная масса через энергию или через импульс. Чтобы решить эти проблемы, Пуанкаре в 1905 году[A 8] и 1906[A 9] ввёл некий тип давления неэлектрической природы, который вносит добавочную величину к энергии тел и поэтому объясняет множитель 4/3 в выражении для отношения электромагнитной массы-энергии. Однако, хотя выражение Пуанкаре для энергии электронов было правильным, он ошибочно заявил, что в массу тел вносит вклад только электромагнитная энергия[B 9].

Проблема множителя 4/3 становится более понятной, когда для всех действующих полей в физической системе используется обобщённая теорема Пойнтинга[3]. В этом случае показывается, что причиной проблемы множителя 4/3 является различие между 4-вектором и 4-тензором второго ранга. Действительно, энергия и импульс системы образуют 4-импульс. Однако плотности энергии и импульса электромагнитного поля являются временными компонентами тензора энергии-импульса и не образуют 4-вектор. Это же относится и к интегралам по объёму от этих компонент. В результате при прямолинейном постоянном движении системы, состоящей из частиц вещества и полей, релятивистская энергия и импульс в 4-импульсе системы пропорциональны друг другу. В противоположность этому, энергия и импульс электромагнитного (или гравитационного) поля системы пропорциональны друг другу с дополнительным множителем 4/3.

Концепция электромагнитной массы больше не рассматривается как причина массы «сама по себе», поскольку вся масса (а не только её электромагнитная часть) пропорциональна энергии и может быть «преобразована» в различные формы энергии, что объясняется эквивалентностью массы и энергии по Эйнштейну[B 10].

Гравитация

В 1900 г.[A 10] Лоренц попытался объяснить гравитацию на основе уравнений Максвелла. Он сначала рассмотрел теорию гравитации Лесажа и утверждал, что, возможно, существует универсальное излучение в виде поля, состоящее из очень сильно проникающего электромагнитного излучения и оказывающего равномерное давление на каждое тело. Лоренц показал, что между заряженными частицами действительно возникнет сила притяжения, если предположить, что падающая энергия полностью поглощается. Это была та же самая фундаментальная проблема, которая затронула другие модели Лесажа, потому что излучение должно как-то исчезнуть, и любое поглощение должно привести к огромному нагреву. Поэтому Лоренц отказался от этой модели.

В той же работе, как и Моссотти и Целльнер, он предположил, что притяжение противоположных заряженных частиц сильнее, чем отталкивание одноимённо заряженных частиц. Результирующая конечная сила — это то, что известно как всемирное тяготение, в котором скоростью гравитации является скорость света. Это приводит к конфликту с законом тяготения Исаака Ньютона, в котором, как показал Лаплас, конечная скорость гравитации приводит к некоему виду аберрации и, следовательно, делает орбиты неустойчивыми. Однако Лоренц показал, что теория не имеет отношения к критике Лапласа, потому что из-за структуры уравнений Максвелла действуют только эффекты порядка v2/c2. Но Лоренц подсчитал, что значение для смещения перигелия Меркурия было слишком низким. Он написал:
Downgrade Counter